Charge-Transfer Complexes of Tetracyanoethylene with Cycloalkanes, Alkenes, and Alkynes and Some of Their Aryl Derivatives

John E. Frey,* Anne M. Andrews, Daniel G. Ankoviac, Douglas N. Beaman, Louis E. Du Pont, Thomas E. Elsner, Susan R. Lang, Marian A. Oosterbaan Zwart, Ronald E. Seagle, and Lori A. Torreano

Department of Chemistry, Northern Michigan University, Marquette, Michigan 49855
Received August 22, 1989

Spectral characteristics ($\lambda_{\max }, \Delta \nu_{12}, \epsilon$) and association constants (K) of charge-transfer (CT) complexes of tetracyanoethylene (TCNE) with 89 hydrocarbon donors (D) including cycloalkanes, alkenes, alkynes, benzene, benzene- d_{6}, alkylbenzenes, styrenes, biphenyls, polyphenylalkenes and phenylalkynes in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ are presented. New data and reevaluation of older published data indicate that many donor/TCNE systems contain significant concentrations of the $\mathrm{D}_{2}(\mathrm{TCNE})$ in addition to the predominant $\mathrm{D}(\mathrm{TCNE})$ species. The donor orbitals from which CT transitions originate are determined by the correlation of $\lambda_{\text {max }}$ and $\Delta \nu_{1 / 2}$ values of CT bands of the complexes with the ionization bands in the photoelectron spectra of the donor molecules. Positive relationships between both CT energies and thermodynamic stabilities of complexes with respect to the number and geometry of substituent alkyls are established for alkene-, alkyne-, and alkylbenzene-TCNE complexes. The K values of functionally similar complexes are related to the bulk and location of substituent alkyl groups which sterically affect the interaction of the donor molecule and TCNE. Stabilities and CT energies of complexes are correlated with intramolecular conjugative and inductive effects between functional groups, as well as geometric and structural factors that control the angular orientation of the groups to each other.

Introduction

Merrifield and Phillips ${ }^{1}$ first reported the formation of charge-transfer (CT) complexes of tetracyanoethylene (TCNE) with cyclohexene and numerous aromatic hydrocarbons in dichloromethane (DCM). Voigt ${ }^{2}$ and Haselbach and Rossi ${ }^{3}$ determined that these complexes arise from a $\pi \rightarrow \pi^{*}$ electron transfer between the HOMO of the hydrocarbon donor (D) and the LUMO of TCNE and that the $\nu_{\text {max }}$ values of the absorbance bands of a complex depend upon the energy required to effect the electron transfer:

$$
\mathrm{D}+\mathrm{TCNE}+h \nu_{\mathrm{CT}} \Leftrightarrow \mathrm{D}^{+}-\mathrm{TCNE}^{-}
$$

Although CT complexes of TCNE have been studied intensively over three decades, the complexes of several major classes of hydrocarbons including alkylbenzenes, methyl- and phenylcyclopropanes, methyl- and phenylalkynes, methylstyrenes, conjugated polyenes, and polynuclear aromatics have not been systematically characterized or have not been studied at all. Furthermore there are numerous instances of disagreement between values of association constants (K) and molar absorbances (ϵ) for the same complexes reported by different authors. For example, K values of $0.20,{ }^{1} 0.26,{ }^{4}$ and 0.56^{5} have been reported for toluene-TCNE in DCM at $20-25^{\circ} \mathrm{C}$. To resolve some of these discrepancies, we have reexamined the literature on the TCNE complexes of methylbenzenes and of cycloalkanes, alkenes, and alkynes and their aryl derivatives and reevaluated the K and ϵ values of some of them. In this investigation, which is a continuation of work reported on TCNE complexes of aryl derivatives of elements of groups $13,{ }^{6}$ and $14,,^{5}$ and $15,{ }^{5}$ we determined characteristics of 63 new hydrocarbon/TCNE systems in DCM.

[^0]Several generalizations relating the characteristics of spectral bands and the values of association constants of donor-TCNE complexes to molecular geometry and to steric, conjugative, and inductive interactions between functional and substituent groups within the donor molecule have emerged from the systematic study of several classes of donors. Material drawn from the literature of photoelectron spectroscopy (PES) is used to relate various features of the spectral bands of donor-TCNE complexes with corresponding features of the PE ionization bands and orbitals of the donor molecules.

Ionization energies (IE) obtained by PES are correlated with specific CT bands of the complexes by means of eq 1 , where $h \nu_{\mathrm{CT}}$ is the energy of the CT band at maximum

$$
\begin{equation*}
h \nu_{\mathrm{CT}}(\mathrm{eV})=0.81 I_{\mathrm{D}}-4.28 \tag{1}
\end{equation*}
$$

absorbance, I_{D} is the vertical IE (electronvolts) of the corresponding orbital of the donor molecule taken from PE spectra, and 0.81 and 4.28 are empirical parameters derived from data for 265 donor molecules and related donor-TCNE systems. ${ }^{7}$ The correlation coefficient and standard deviation of eq 1 are 0.972 and 0.13 eV . The reliability of the equation is $\pm 5 \%$ relative. For the purposes of this discussion eq 1 is used in the alternate form

$$
\lambda_{\max }(\mathrm{nm})=1240(\mathrm{eV} \mathrm{~nm}) /\left(0.81 I_{\mathrm{D}}-4.28\right)
$$

where $\lambda_{\max }$ is the wavelength of maximum absorbance of the CT band and 1240 is a conversion factor.

Experimental Section

Reagents. Solvents and reagent chemicals are the purest grades available from the following chemical suppliers: Aldrich, Alfa, Fisher, Fluka, Frinton, Kodak, Lancaster, and Pfalz \& Bauer. Reagents of less than 98% purity were subjected to repeated distillation, recrystallization, or vacuum sublimation until their optical spectra and physical constants agreed closely with data found in the literature, except where noted. Exact purities were determined by capillary column chromatography using a Hew-lett-Packard HP5980A chromatograph. TCNE was recrystallized twice from chlorobenzene and sublimed two or three times in vacuo: $\mathrm{mp} 199-200^{\circ} \mathrm{C}$. Spectrograde dichloromethane was used without further purification.

[^1]Stock solutions of all reagents in DCM were prepared by transferring solids or liquids directly into tared volumetric flasks and filling to the mark with solvent. Most weighings were made on a Sartorius R 160 P semimicrobalance to the nearest 0.01 mg . Mixtures were prepared by transferring measured amounts of stock solutions with calibrated BDL pipetters (precision ± 0.001 mL). All weight and volume measurements were accurate to at least $\pm 1 \%$ relative.

Spectral Analysis. Spectra were recorded on a Beckman ACTA-CIII spectrophotometer with matched $10-, 25-$, and $50-\mathrm{mm}$ quartz cells at $21^{\circ} \mathrm{C}$. Concentrations of stock solutions were adjusted to yield absorbance values in the range $0.1-0.8$. Absorbance values, accurate to ± 0.001 absorbance unit, were refined by using Liptay's procedure ${ }^{8}$ and fit to the Scott equation: ${ }^{9}$

$$
\begin{equation*}
C_{\mathrm{X}} C_{\mathrm{Y}} / A=1 / K \epsilon+(1 / \epsilon) C_{\mathbf{X}} \tag{2}
\end{equation*}
$$

Here C_{X} and C_{Y} are the analytical molarities of reactants X and Y , and $C_{\mathrm{X}}>{ }^{10} C_{\mathrm{Y}} ; A$ is the absorbance of the complex XY, ϵ is the molar absorbance of XY, and K is the apparent association constant of XY in L/mol. Values of ϵ and K are calculated from the slope ($1 / \epsilon$) and intercept $\left(1 / K_{\epsilon}\right)$ of eq 2.

In cases where the Scott line is curved because of a possibly significant concentration of the termolecular species $\mathrm{X}_{2} \mathrm{Y}$, the Foster-Matheson equation, ${ }^{10}$ eq 3 , is used. Here $n=C_{X} / C_{Y} \sim$

$$
\begin{equation*}
b C_{\mathrm{X}} / A=[(n+1) / n] / \epsilon+[1 / n K \epsilon] / C_{\mathrm{X}} \tag{3}
\end{equation*}
$$

1 and b is the cell path length; ϵ and K are calculated from the intercept and slope.

Continuous-variations plots of all complexes characterized in this study yield symmetrical curves with maxima at $50 \mathrm{~mol} \%$, indicating that $1: 1$ complexes are dominant in solutions where $C_{\mathrm{X}}<10 C_{\mathrm{Y}}$. All uncertainty values are given at the 50% confidence level, and $\lambda_{\text {max }}$ values are rounded to the nearest 5 nm .

Association Constants. Deranleau ${ }^{11}$ demonstrated on theoretical grounds that 75% of the saturation fraction curve is required to show unequivocal correspondence between the equation for the model of the system and the equation fitting the data and that the most reliable values of ϵ and K are obtained when the saturation fraction, $s=[\mathrm{XY}] / C_{\mathrm{Y}}$, lies between 0.2 and 0.8 . Since most of the complexes studied in this investigation have $K<2$, it was usually necessary to use extremely large $C_{\mathrm{X}} / C_{\mathrm{Y}}$ ratios ($100<C_{\mathrm{X}} / C_{\mathrm{Y}}<1200$) to achieve saturation fraction values greater than 0.2 . In some instances it was impossible to achieve sufficiently high concentration ratios because of the poor solubility of the donor and/or the low absorbance limitations of the complex.

In cases where there was disagreement between ϵ and K values reported in the literature, we repeated the determinations at various $C_{\mathrm{X}} / C_{\mathrm{Y}}$ ratios to ascertain whether the differences were due to methodology, to interpretation of the data, or to variations of ϵ and K with respect to $C_{\mathrm{X}} / C_{\mathrm{Y}}$. Oftentimes systems that yield apparently straight Scott lines at relatively low $C_{\mathrm{X}} / C_{\mathrm{Y}}$ ratios yield distinctly curved lines at higher ratios indicating the probable presence of complexes such as $\mathrm{X}_{2} \mathrm{Y}$ in addition to XY . Whenever possible, determinations were carried out with TCNE in excess, although the low solubility of TCNE in DCM (about 0.09 M) severely limited the applicability of this approach. It should be noted that straight Scott lines were almost always obtained with a $10-20$-fold excess of TCNE, indicating the absence of do-nor-(TCNE) ${ }_{2}, \mathrm{DT}_{2}$, complexes in this concentration ratio range. Since curvature in Scott lines is almost always attributable to the presence of $\mathrm{D}_{2} \mathrm{~T}$ species and since there is as yet no evidence for DT_{2} species, we assume that ϵ and K values obtained from the analysis of systems where $C_{\mathrm{D}} / C_{\mathrm{T}}<1 / 20$ are reliable measures of the characteristics of the $1: 1$ complex, DT.

In the study of systems in which TCNE is a solute and DCM is the solvent, an added complication arises in the calculation of K because TCNE and DCM form a complex with an association constant, K_{s} ($\mathrm{s}=$ solvent), of $0.29 \mathrm{~L} / \mathrm{mol}$ as calculated by Ewall and Sonnessa. ${ }^{12}$ These authors derived eq 4, relating the apparent

[^2]\[

$$
\begin{equation*}
K_{\mathrm{XY}}=K\left(1+C_{\mathrm{s}} K_{\mathrm{g}}\right) \tag{4}
\end{equation*}
$$

\]

association constant K (the value obtained by Scott analysis) with K_{XY} (the true association constant for XY). Here C_{s} is the molar concentration of the solvent and $1+C_{8} K_{\mathrm{s}}$ is the solvent complexation factor. In dilute solutions of DMC ($C_{X}<0.1$) eq 4 takes the form of eq 5 . Only in solutions with donor concentrations

$$
\begin{equation*}
K_{\mathrm{XY}}=K(1+15.6 \times 0.29)=5.5 K \tag{5}
\end{equation*}
$$

in the 1-2 M range does the solvent complexation factor drop below 5.0. Since the solute concentrations used in this study rarely exceed 1 M , we assume that K is proportional to K_{XY} and report only K values, as is customary.
Further complications arise in concentrated solutions due to changes in solvent competition for TCNE that may yield Scott lines with negative slopes. In studies of TCNE complexes with methylcyclopropanes and alkenes, for example, where Scott analysis does yield negative slopes, we assume that K is less than 0.1 and that the spectra are due to contact-CT (CCT) interactions.

Definitive or preferred values of the parameters ϵ and K for the donor/TCNE systems presented herein are selected by using the following criteria:
(1) If the Scott lines for a specific system exhibit appreciable curvature, no values of ϵ and K are reported.
(2) If the Scott lines for a specific system are straight or exhibit marginal or doubtful curvature, the parameter values are reported over several different $C_{\mathrm{D}} / C_{\mathrm{T}}$ ranges if possible. (a) When the values for the various systems are in good agreement, indicating absence of $D_{2} T$ species, the results from the system having the widest saturation range are designated as definitive or preferred values. (b) If the values of the parameters change progressively with C_{D} / C_{T} ratios, the result from the system having the lowest ratio is considered to be closest to the definitive value since this is the system with the smallest relative amount of $\mathrm{D}_{2} \mathrm{~T}$ species. (c) Results from systems where $C_{\mathrm{D}} / C_{\mathrm{T}}<1$ are normally designated as definitive.

Results and Discussion

The 89 complexes characterized in this study are divided into nine categories according to the functional group and structural type of the donor molecule as follows: 1, cycloalkanes; 2 , alkenes; 3 , alkynes; 4 , benzene and deuteriobenzene; 5, alkyl- and alkenylbenzenes; 6, alkyldi benzenes and biphenyls; 7, styrenes; 8 , polyphenylalkanes; 9 , phenylalkynes. Donors are coded for reference in the text according to the alphanumeric character shown in column 1, Table I.
Wavelength maxima for CT bands are shown in columns $3-5$. When only one band appears in a spectrum, its wavelength maximum is reported as $\lambda_{\max }$ in column 3. If the band appears as a shoulder on the solute cutoff, the wavelength at one-half band height is given with an sh suffix. If two distinct bands appear in the spectrum, the wavelength maxima are reported as λ_{1} and λ_{2} in columns 4 and 5. If the main band is deconvoluted into two overlapping bands, the values of λ_{1} and λ_{2} are shown in italics. The ratios of absorbances at λ_{2} and $\lambda_{1}, A_{2} / A_{1}$, are given in column 6 , and the band width at half-height, $\Delta \nu_{1 / 2}$, is given in column 7 .

Molar absorbance values, ϵ, are given at $\lambda_{\text {max }}$ or for the band with the greater absorbance in column 8 . The apparent association constants, $K(\mathrm{~L} / \mathrm{mol})$, for the complexes are reported in col 9 . The product ϵK is a measure of the "effective absorbance" of a complex because the larger the value of ϵ and/or K, the greater the net absorbance of the complex for a given level of reagent concentrations. The ϵK values, given in column 10, are of interest because their magnitudes are characteristic of some classes of complexes; in certain cases, trends in ϵK values follow progressive
(12) Ewall, R. X.; Sonnessa, A. J. J. Am. Chem. Soc. 1970, 92, 2845-2848.

Table I. Complexes of TCNE with Hydrocarbons in Dichloromethane at $21^{\circ} \mathrm{C}$

code	donor molecule	$\lambda_{\text {max }}, \mathrm{nm}$	$\lambda_{1}, \mathrm{~nm}$	$\lambda_{2}, \mathrm{~nm}$	A_{2} / A_{1}	$\begin{aligned} & \Delta \nu_{1 / 2}, \\ & \mathrm{~cm}^{-1} \end{aligned}$	$\epsilon_{\max }, \mathrm{L} /(\mathrm{mol})$	K, L/mol	ϵK	$C_{\text {D }} / C_{T}$	\% satn
1 A	1,1-dimethylcyclopropane	350 sh					neg			19	
1 B	1,1,2-trimethylcyclopropane	385 sh					730 ± 160	0.04 ± 0.01	30	20	2-5
1 C	1,1,2,2-tetramethylcyclopropane	425 sh					300 ± 42	0.04 ± 0.01	12	20	1-3
1D	adamantane	365 sh					171 ± 6	0.61 ± 0.02	100	10	8-18
1 E	ad	365 sh					117 ± 20	0.51 ± 0.09	60	16	5-10
2A	1-hexene	355					1830 ± 510	0.03 ± 0.01	50	76	2-5
2B	trans-2-hexene	410				7200	cur			16	
2 C	cis-2-hexene	415				6800	1480 ± 400	0.04 ± 0.01	60	15	1-3
2D	cyclohexene	415				6900	cur			20	
	cyclohexene ${ }^{\text {b }}$	422					4760	<0.01	<50		
	cyclohexene ${ }^{\text {c }}$	408					2000	0.03 ± 0.01	60		
	cyclohexene ${ }^{\text {d }}$	417									
2E	2-methyl-2-pentene	465				6500	neg			20	
2F	2,3-dimethyl-2-butene	535				6100	3030 ± 660	0.05 ± 0.01	150	20	1-3
2G	1,5-hexadiene	345					neg			20	
2H	2,5-dimethyl-1,5-hexadiene	400				8100	neg			14	
21	2,5-dimethyl-2,4-hexadiene*	645				5000	2010 ± 140	1.28 ± 0.09	2570	15	7-15
2 J	1,4-cyclohexadiene*		340	440	0.96		279 ± 17	0.46 ± 0.03	130	10	5-12
	1,4-cyclohexadiene		345	445	0.96		cur			450	
	1,4-cyclohexadiene ${ }^{\text {c }}$		350	444	1.13		2150 ± 110	0.06 ± 0.01	130		
2K	1,5-cyclooctadiene	420				7100	cur			10	
2L	hexamethyl Dewar benzene*		475	535	0.88						
3A	1-pentyne	335 sh								20	
3B	2-pentyne	355					cur			20	
3C	1-hexyne	335 sh									
3D	2-hexyne	365					305 ± 54	0.50 ± 0.09	150	1	2-4
	2-hexyne	365					cur			20	
3E	3 -hexyne	365					368 ± 84	0.32 ± 0.07	120	1	1-3
	3-hexyne	365					cur			20	
3 F	2,4-hexadiyne	405				5700	2120 ± 80	0.34 ± 0.01	720	67	7-15
3G	1,7-octadiyne	330 sh									
4A	benzene	385				5800	3560 ± 660	0.12 ± 0.02	430	10	1-3
	benzene	385				5800	2630 ± 260	0.17 ± 0.02	450	40	3-7
	benzene	385				5800	4450 ± 240	0.10 ± 0.01	450	160	4-8
	benzene	385				5800	5150 ± 290	0.10 ± 0.01	410	622	6-13
	benzene (composite of four above)						4410 ± 110	0.10 ± 0.01	440		1-16
	benzene ${ }^{\text {b }}$	385				5800	3570	0.10	360		
	benzene ${ }^{e}$	385				5900	3310 ± 430	0.11 ± 0.01	360		
	benzene ${ }^{\prime}$	385				5800	736 ± 56	0.67 ± 0.05	490	15	9-15
	benzene ${ }^{8}$ (in CHCl_{3})	391					2900 ± 50	0.25 ± 0.01	730		
4B	benzene- d_{6}	390				6000	1600 ± 100	0.29 ± 0.02	460	29	4-8
	benzene- d_{6}	385				6200	cur			429	
5A	toluene	410				6500	2760 ± 480	0.28 ± 0.05	770	11	2-5
	toluene	410				6500	3190 ± 140	0.24 ± 0.01	770	35	4-8
	toluene	410				6800	3800 ± 240	0.20 ± 0.01	760	150	6-13
	toluene	410				6800	3080 ± 90	0.26 ± 0.01	800	615	14-27
	toluene (composite of four above)						3890 ± 80	0.19 ± 0.01	740		1-22
	toluene ${ }^{\text {b }}$	406				6800	3300	0.20	660		
	toluene ${ }^{e}$	410				6500	1410 ± 130	0.56 ± 0.05	790	10	3-9
	toluene f	405	395	425	1.08	6800	2680	0.26	700		
5 B	ethylbenzene	412				6600	1800 ± 210	0.33 ± 0.04	590	1	<1
	ethylbenzene	415				6500	1680 ± 310	0.37 ± 0.07	620	10	3-7
	ethylbenzene	410				6500	cur			390	
5C	n-propylbenzene	415				6600	2950 ± 350	0.19 ± 0.02	560	20	2-5
	n-propylbenzene	410				6800	2020 ± 130	0.30 ± 0.02	610	272	11-23
	n-propylbenzene	410				6700	cur			334	
5D	isopropylbenzene	413				6500	3630 ± 390	0.10 ± 0.01	360	100	3-7
	isopropylbenzene	413				6800	10100 ± 1100	0.04 ± 0.01	400	527	3-7
	isopropylbenzene ${ }^{h}$	418									
5 E	tert-butylbenzene	415				6800	8800 ± 2100	0.03 ± 0.01	300	100	1-3
	tert-butylbenzene ${ }^{i}$ (in CHCl_{3})	420	402	453	0.84						
5F	1,2-dimethylbenzene	435				6500	3950 ± 100	0.55 ± 0.02	2170	647	21-39
	1,2-dimethylbenzene ${ }^{\text {b }}$	430				6400	3860	0.37	1430		
	1,2-dimethylbenzene ${ }^{f}$		419	453	0.94	6400	2510 ± 180	0.67 ± 0.05	1680		
5G	1,3-dimethylbenzene	435				6100	2570 ± 110	0.66 ± 0.03	1700	200	15-30
	1,3-dimethylbenzene	435				6200	3030 ± 80	0.57 ± 0.02	1730	860	23-41
	1,3-dimethylbenzene ${ }^{6}$	440				6400	3300	0.33	1100		
5H	1,4-dimethylbenzene		415	460		8400	2980 ± 120	0.41 ± 0.02	1220	185	9-19
	1,4-dimethylbenzene		415	460	0.95	8600	2880 ± 20	0.45 ± 0.01	1300	694	17-32
	1,4-dimethylbenzene ${ }^{\text {b }}$		415	460	0.96		2650	0.43	1140		
	1,4-dimethylbenzene ${ }^{\text {f }}$		388	466	1.61		1710 ± 40	0.73 ± 0.02	1250		
	1,4-dimethylbenzene ${ }^{\text {i }}$ (in	425	408	490	0.96						

Table I (Continued)

code	donor molecule	$\lambda_{\text {max }}, \mathrm{nm}$	$\lambda_{1}, \mathrm{~nm}$	$\lambda_{2}, \mathrm{~nm}$	A_{2} / A_{1}	$\begin{aligned} & \Delta \nu_{1 / 2}, \\ & \mathrm{~cm}^{-1} \end{aligned}$	$\stackrel{\epsilon_{\text {max }}}{ } /(\operatorname{mol}$ cm)	$K, \mathrm{~L} / \mathrm{mol}$	ϵK	$C_{\text {D }} / C_{T}$	\% satn
51	1,4-diethylbenzene		418	465	0.93	8300	4190 ± 500	0.16 ± 0.02	670	68	3-8
5J	1,4-di-tert-butylbenzene		400	417	1.02	7300	cur			1	
	1,4-di-tert-butylbenzene ${ }^{i}$ (in CHCl_{3})	427	426	521	0.47						
5K	1,2,3-trimethylbenzene	465				5800	3560 ± 760	1.29 ± 0.28	4590	1/16	4-8
	1,2,3-trimethylbenzene	470				5300	1990 ± 130	2.27 ± 0.15	4520	20	8-17
	1,2,3-trimethylbenzene	465				5600	cur			109	
5L	1,2,4-trimethylbenzene	450				7200	2750 ± 170	1.24 ± 0.07	3410	20	6-12
	1,2,4-trimethylbenzene	455				7300	cur			860	
5M	1,2,4-triethylbenzene	465				7300	714 ± 37	1.70 ± 0.09	1210	1	1-5
	1,2,4-triethylbenzene	465				7300	cur			92	
5N	1,3,5-trimethylbenzene	465				5600	2460 ± 160	1.56 ± 0.10	3840	20	9-18
	1,3,5-trimethylbenzene	465				5600	3360 ± 120	1.07 ± 0.04	3600	182	14-28
	1,3,5-trimethylbenzene	460				5600	4440 ± 140	0.77 ± 0.03	3420	1110	23-41
	1,3,5-trimethylbenzene ${ }^{\text {b }}$	460				5600	3120	1.03	3210		
	1,3,5-trimethylbenzene f^{f}	461					2600 ± 350	1.33 ± 0.18	3460		
50	1,3,5-triethylbenzene	473				5600	4770 ± 840	0.27 ± 0.05	1290	100	4-10
5P	1,3,5-tri-tert-butylbenzene	450sh					neg			9	
5Q	1,2,3,4-tetramethylbenzene	495				5500	2300 ± 70	4.43 ± 0.14	10200	1/20	13-26
	1,2,3,4-tetramethylbenzene	490				5800	cur			19	
5R	1,2,3,5-tetramethylbenzene (85%)	495				5900	2420 ± 50	3.81 ± 0.08	9220	1/20	11-23
5S	1,2,4,5-tetramethylbenzene	480				7400	1920 ± 70	4.27 ± 0.16	8200	1/20	12-25
	1,2,4,5-tetramethylbenzene ${ }^{\text {b }}$	480					2075	3.37	7000		
	1,2,4,5-tetramethylbenzene f		441	521	1.58		2960 ± 30	2.40 ± 0.02	7100		
5 T	pentamethylbenzene	510				5800	5220 ± 220	4.49 ± 0.20	23400	41	11-23
	pentamethylbenzene ${ }^{\text {b }}$	520				5800	3270	7.39	25500		
	pentamethylbenzene ${ }^{f}$		507	546	0.77		3920 ± 220	6.67 ± 0.37	26200		
5 U	hexamethylbenzene	540				5400	4110 ± 140	20.74 ± 0.74	85200	20	18-33
	hexamethylbenzene ${ }^{\text {b }}$	545				5500	4390	16.77	73600		
	hexamethylbenzene f	545				5300	4240 ± 110	19.25 ± 0.50	81600		
5 V	hexaethylbenzene	540				8400	neg			9	
5W	cyclopropylbenzene	405	400	480	0.83	9300	3680 ± 320	0.14 ± 0.01	520	20	1-4
	cyclopropylbenzene		405	460 sh	0.87	9500	3290 ± 250	0.16 ± 0.01	530	368	8-18
	cyclopropylbenzene ${ }^{h}$	480									
5X	allylbenzene	405				7100	1670 ± 90	0.28 ± 0.02	470	20	4-8
6 A	1,2-diphenylethane	410				6700	880 ± 40	1.20 ± 0.06	1060	10	8-18
	1,2-diphenylethane	410				6700	2370 ± 260	0.40 ± 0.04	950	58	6-13
6 B	1,2-diphenylcyclopropane		400	475 sh	0.68		1760 ± 70	0.50 ± 0.02	880	20	5-11
6C	9,10-dihydroanthracene	435					1480 ± 140	1.09 ± 0.11	1610	1/10	3-6
	9,10-dihydroanthracene	435					cur			20	
6 D	iminobibenzyl		415	810	1.48		1940 ± 70	2.78 ± 0.10	5390	20	10-20
6E	[2.2]paracyclophane	515				6200	2110 ± 230	2.60 ± 0.29	5490	1/16	7-14
	[2.2]paracyclophane ${ }^{j}$	521									
6 F	biphenyl		390	495	0.88		1290 ± 160	0.37 ± 0.05	480	19	4-9
	biphenyl		390	495	0.88		2750 ± 270	0.17 ± 0.02	470	230	7-15
	biphenyl ${ }^{\text {b }}$	500					1450	0.17	250		
	biphenyld (in CHCl_{3})	505					1050 ± 50	0.73 ± 0.02	770		
6G	fluorene		415	565	1.42		1490 ± 90	1.12 ± 0.07	1670	15	6-13
	fluorene		415	565	1.42		1480 ± 40	1.11 ± 0.03	1640	125	17-30
	fluorene ${ }^{b}$		416	570	1.35		1430	1.08	1540		
	fluorenes (in CHCl_{3})		419	567			2000 ± 50	1.44 ± 0.08	2880		
6H	9,10-dihydrophenanthrene		425	560	1.10		960 ± 40	1.01 ± 0.04	970	14	5-12
	9,10-dihydrophenanthrene		425	565	1.09		1180 ± 50	0.85 ± 0.04	1000	82	14-27
	9,10-dihydrophenanthrene ${ }^{h}$		425	566							
6 I	carbazole ${ }^{e}$		385	600	3.24	6200	3860 ± 230	1.46 ± 0.09	5640	1/20	8-13
	carbazoles (in CHCl_{3})	605					2900 ± 50	5.12 ± 0.13	14850		
7A	styrene		395	480	1.17		674 ± 61	0.69 ± 0.06	470	15	8-17
	styrene		395	475	1.13		2410 ± 190	0.18 ± 0.01	430	76	5-10
	styrene ${ }^{\text {a }}$ (in CHCl_{3})	485					1250 ± 50	0.65 ± 0.01	810		
	styrene ${ }^{k}$ (in CHCl_{3})		390	487							
7B	2-methylstyrene	435	425	475	0.74	7600	251 ± 6	2.82 ± 0.01	710	20	26-42
7C	3-methylstyrene		440	490	1.02		880 ± 70	1.02 ± 0.08	900	20	11-21
	3-methylstyrene		440	487	1.02		2130 ± 90	0.39 ± 0.02	830	46	6-13
7D	4-methylstyrene		395	525	1.38		340 ± 9	2.66 ± 0.08	900	30	26-43
7E	2,4-dimethylstyrene*		435	525	1.07		cur			20	
7F	2,5-dimethylstyrene	475	460	540		7300	820 ± 70	2.34 ± 0.19	1910	1/10	14-25
	2,5-dimethylstyrene	475				7500	cur			20	
7G	2,6-dimethylstyrene	465	455	480		5700	1690 ± 90	1.15 ± 0.06	1940	20	8-16
7H	2,4,6-trimethylstyrene	480	455	505		6500	1650 ± 50	2.33 ± 0.07	3850	20	15-29
7I	2,3,4,5,6-pentamethylstyrene	540				5300	4720 ± 260	5.22 ± 0.29	24600	20	9-18
	2,3,4,5,6-pentamethylstyrene	540				5400	4400 ± 160	5.31 ± 0.21	24600	88	17-33
7J	α-methylstyrene		400	490	1.04		285 ± 18	1.38 ± 0.09	390	26	20-36
7K	trans- β-methylstyrene		400	530	1.52		cur			28	
7L	1-phenyl-1-cyclohexene		400	560	1.24		283 ± 15	2.26 ± 0.12	640	1/10	8-14
	1-phenyl-1-cyclohexene		400	560	1.24		cur			20	
7M	β, β-dimethylstyrene		400	545	1.10		1200 ± 110	0.35 ± 0.03	420	20	4-8

Table I (Continued)

code	donor molecule	$\lambda_{\text {max }}, \mathrm{nm}$	$\lambda_{1}, \mathrm{~nm}$	$\lambda_{2}, \mathrm{~nm}$	A_{2} / A_{1}	$\begin{aligned} & \Delta v_{1 / 2}, \\ & \mathrm{~cm}^{-1} \end{aligned}$	$\mathrm{L} / \mathrm{\epsilon}_{\text {max }}$, cm)	$K, \mathrm{~L} / \mathrm{mol}$	ϵK	$C_{\text {D }} / C_{T}$	\% satn
7 N	indene		420	540	1.24		799 ± 65	1.60 ± 0.13	1280	1/10	5-11
	indene		420	540	1.24		curr			20	
	indenes (in CHCl_{3})		430	542			1350 ± 50	1.63 ± 0.04	2200		
70	1,2-dihydronaphthalene		425	565	1.17		508 ± 63	1.64 ± 0.20	830	1/10	5-11
	1,2-dihydronaphthalene		425	560	1.17		cur			44	
7P	m-diisopropenylbenzene	505				6900	357 ± 10	1.70 ± 0.05	610	20	18-33
	m-diisopropenylbenzene	505				6800	267 ± 11	2.35 ± 0.13	630	65	36-55
7Q	p-diisopropenylbenzene*		410 sh	575		5000	76 ± 1	7.26 ± 0.13	550	20	54-72
8A	1,1-diphenylethylene		395 sh	510			483 ± 63	0.53 ± 0.07	260	10	5-9
	1,1-diphenylethylene		400 sh	507			cur			93	
	1,1-diphenylethylene ${ }^{k}$		390	522							
8B	cis-1,2-diphenylethylene		390	530	0.79		2620 ± 260	0.18 ± 0.02	470	15	3-7
	cis-1,2-diphenylethylene		390	530	0.79		2350 ± 210	0.18 ± 0.02	420	97	5-10
	cis-1,2-diphenylethylene ${ }^{k}$		390	547							
	cis-1,2-diphenylethylene ${ }^{l}$		390	532			280	1.68	470		
	cis-1,2-diphenylethylen ${ }^{m}$		403	535							
8C	trans-1,2-diphenylethylene		400 sh	595		5200	1160 ± 70	0.93 ± 0.06	1080	20	8-15
	trans-1,2-diphenylethylene		400 sh	595		5100	3340 ± 290	0.29 ± 0.03	970	92	5-11
	trans-1,2-diphenylethylene ${ }^{k}$		377	608							
	trans-1,2-diphenylethylene ${ }^{\text {d }}$		390	595			720	1.35	970		
	trans-1,2-diphenylethylene ${ }^{\text {m }}$		395	602							
8D	N-benzylideneaniline	495					228 ± 20	3.08 ± 0.28	700	1/10	10-20
	N-benzylideneaniline	495					400 ± 51	1.79 ± 0.23	720	1	2-6
	N-benzylideneaniline	495					648 ± 39	1.12 ± 0.06	730	20	12-22
8E	1,1-di-o-tolylethylene	435	425	510	0.70	8100	766 ± 37	0.69 ± 0.03	530	11	7-14
8F	1,1-di-p-tolylethylene		400 sh	565			149 ± 3	3.14 ± 0.06	470	20	33-52
8G	iminostilbene	780					1110 ± 90	7.03 ± 0.66	7800	20	18-30
8H	triphenylethylene		400 sh	595		5500	1570 ± 370	0.29 ± 0.07	460	20	3-6
	triphenylethylene ${ }^{k}$		390	623							
8I	tetraphenylethylene	600					622 ± 110	0.27 ± 0.05	170	1	1-2
	tetraphenylethylene ${ }^{\text {b }}$	610					67	0.92	60		
	tetraphenylethylene ${ }^{k}$		390	650							
8J	1,4-diphenyl-1,3-butadiene*	675					714 ± 75	2.19 ± 0.23	1560	1/9	7-15
8K	1,6-diphenyl-1,3,5-hexatriene*	775					cur			1/10	
8L	1,8-diphenyl-1,3,5,7-octatetraene*	>750								1/10	
8M	1,1,4,4-tetraphenyl-1,3-butadiene	730					213 ± 32	1.80 ± 0.27	380	1/6	9-12
9A	phenylacetylene	420	370	435	1.27		1250 ± 140	0.21 ± 0.02	260	15	3-7
	phenylacetylene	420					3950 ± 730	0.06 ± 0.01	240	149	3-7
9B	1-phenyl-1-propyne		365	475	1.29		739 ± 21	0.81 ± 0.02	600	14	10-17
	1-phenyl-1-propyne		365	475			cur			121	
9 C	diphenylacetylene		365 sh	520		5600	934 ± 58	0.72 ± 0.05	670	21	10-17
	diphenylacetylene		365 sh	525	1.05	5800	1740 ± 110	0.36 ± 0.02	630	100	8-17
9D	diphenylbutadiyne		375 sh	510			448 ± 18	1.24 ± 0.05	560	10	13-20
	diphenylbutadiyne		375 sh	508		6300	4040 ± 340	0.11 ± 0.01	560	460	2-5

${ }^{a}$ Reference 15. ${ }^{b}$ Reference 1. ${ }^{c}$ Reference 3. ${ }^{d}$ Reference 18. ${ }^{e}$ Reference 4. ${ }^{t}$ Reference 5. ${ }^{g}$ Cooper, A. R.; Crowne, C. W. P.; Farrell, P. G. Trans. Faraday Soc. 1966, 62, 18-28. ${ }^{h}$ Reference 31. ${ }^{i}$ Holder, D. D.; Thompson, C. C. J. Chem. Soc., Chem. Commun. 1972, $277-279$. ${ }^{j}$ Reference 37. ${ }^{k}$ Bendig, J.; Dobslaw, B.; Kreysig, D.; Sauer, J. J. Prakt. Chem. 1976, 318, 616-628. 'Reference 46. ${ }^{m}$ Matsuo, T.; Aiga, H. Bull. Chem. Soc. Jpn. 1968, 41, 271-274.
modifications in structural groups.
The ratios of the concentrations of stock solutions of donor, C_{D}, and TCNE, C_{T}, are given in column 11. When C_{D} is larger than C_{T}, the ratio is reported as an integer; when TCNE is used in excess, $C_{\mathrm{D}} / C_{\mathrm{T}}$ is reported as a fraction. Finally, the saturation fraction range times 100 , percent s, is given in column 12.

1. Cycloalkanes. TCNE complexes of a highly strained alkane ring system are compared with those of an unstrained system.
a. Methylcyclopropanes. The absorbance spectra of $1 \mathrm{~A}^{-}$, 1B-, and $1 \mathrm{C}-\mathrm{TCNE}$ appear as broad featureless bands that rise steeply from about 500 nm to the TCNE absorbance cutoff at $300-325 \mathrm{~nm}$. The Scott lines have small gradients; that of $1 \mathrm{~A}-\mathrm{TCNE}$ is negative, whereas the Scott lines of 1B- and 1C-TCNE yield apparent K values of $0.04 \mathrm{~L} / \mathrm{mol}$. This value corresponds to an actual K_{XY} of about $0.2 \mathrm{~L} / \mathrm{mol}$ when corrected for solvent complexation by using eq 4 . It is interesting to note that Prue ${ }^{13}$ obtained a value of $0.2 \mathrm{~L} / \mathrm{mol}$ for K_{XY} of CCT complexes using a theoretical model. In view of the large uncertainties in the K value and the small saturation fraction

[^3]ranges ($1-5 \%$) involved, the best that can be said is that complexes of TCNE with methylcyclopropanes are very weak and that the observed spectra probably arise from CCT interactions. The ϵK values of 1 B - and 1C-TCNE at 30 and 12 are the lowest values obtained in this study.
The wavelengths at one-half maximum absorbance for the spectral bands of $1 \mathrm{~A}-, 1 \mathrm{~B}-$, and $1 \mathrm{C}-\mathrm{TCNE}$ are 350 , 385 , and 425 nm , respectively, indicating that the CT band energies decrease with increasing methyl substitution of the cyclopropane ring. This trend is consistent with the well-known tendency of methyl groups to donate electrons to carbon atoms that have sp or sp^{2} hybridization or that are members of highly strained rings. Although the IE values of 1A, 1B, and 1C have not been reported, Heilbronner, et al. ${ }^{14}$ have determined the IEs of the closely related 1,2-disubstituted cyclopropane derivative bicyclo[4.1.0]heptane from its PE spectrum. They assigned the IEs at 9.46 and 10.01 eV for this compound to the in-plane e_{s} and e_{a} Walsh orbitals, which values when substituted into eq 1^{\prime} correspond to CT bands with $\lambda_{\text {max }} 365$ and 325 nm . These results suggest that the spectra of TCNE

[^4]complexes of 1A, 1B, and 1C likewise arise from $e_{s} \rightarrow \pi^{*}$ and $\mathrm{e}_{\mathrm{a}} \rightarrow \pi^{*}$ transitions between the donor and acceptor moieties, since the absorbance bands of these complexes bracket the calculated CT energies.

Optimum overlap between the donor and acceptor orbitals is expected to occur when the cyclopropane ring is parallel to the plane of TCNE as shown in structures I and II. Since the substituents on the cyclopropane ring

strongly hinder effective contact between the donor-acceptor pair, it is not surprising that the calculated association constants for these complexes are 1-2 orders of magnitude lower than usual for CT complexes in which the binding sites are not hindered.
b. Adamantanes. Traven et al. ${ }^{15}$ reported the formation of CT complexes of several σ-donor hydrocarbons with TCNE. A mixture of 1D and TCNE in chloroform was described as having a band with a maximum at 355 nm . Our spectrum of 1D-TCNE consists of a broad shoulder with $\lambda 365 \mathrm{~nm}$ at one-half maximum band height. Analysis of the spectra yields values of K and ϵK that are somewhat greater than those obtained for the methylcyclopropane complexes. The characteristics of 1D- and 1E-TCNE are quite similar, indicating that the two methyl groups on $\mathbf{I E}$ have little effect on the interaction of TCNE with the adamantane cage. The results of our work are in accord with those obtained from the studies of PE spectra of 1D and some of its methyl derivatives by Worley et al. ${ }^{16}$ First, the IE of 1 D at 9.44 eV corresponds to a CT band with $\lambda_{\max } 370 \mathrm{~nm}$, which is in good agreement with our value of 365 nm for the half-absorbance value. Second, the substitution of a methyl group has only a slight effect on the orbital energies of the adamantyl cage.
c. Summary and Conclusions. (1) The methylcyclopropanes and TCNE form weak CCT complexes. Their instability is due primarily to the methyls which hinder effective overlap of the donor and acceptor orbitals. The adamantanes form relatively stable CT complexes with TCNE, indicating effective overlap between the donor orbitals and π^{*} acceptor orbitals.
(2) The half-height wavelengths of the bands for the methylcyclopropane/TCNE systems increase by $35-40 \mathrm{~nm}$ per methyl substituted on the cyclopropane ring, indicating that methyl carbons are electron-releasing with respect to carbons in strained alkane rings. The half-height wavelengths for the adamantane-TCNE complexes are invar-

[^5]iant with methyl substitution, indicating that methyl groups are not electron-releasing with respect to the carbons in relatively unstrained ring systems. These observations support the supposition that carbons in strained rings have more s character (are less electronegative) than the sp^{3} carbons in methyl groups.
(3) The good correlation between the half-height wavelengths of the bands of the cyclopropane- and ada-mantane-TCNE systems with the IEs of the corresponding cyclopropane-Walsh and adamantane- σ orbitals supports the supposition that the absorbances of the TCNE complexes of the methylcyclopropanes and the adamantanes arise from CT transitions between the cycloalkane and TCNE moieties.
2. Alkenes. The most extensive study of alkene-TCNE complexes to date is that of Haselbach and Rossi, ${ }^{3}$ who reported both spectroscopic properties and association constants for CT complexes of five cyclic monoalkenes and seven cyclic dienes and trienes. Other studies include those of Merrifield and Phillips ${ }^{1}$ on cyclohexene-TCNE and of Ponec, Chvalovsky, and co-workers ${ }^{17,18}$ on TCNE complexes of two cyclic and two acyclic monoalkenes. Ponec et al. determined that the absorbances of alkene-TCNE complexes arise from a $\pi_{\mathrm{e}} \rightarrow \pi^{*}$ electron transfer that originates in the ethylenic π orbital (π_{e}) of the alkene molecule and terminates in the LUMO (π^{*}) of the TCNE.
a. Monoalkenes. Ponec and Chvalovsky ${ }^{17}$ reported $\lambda_{\text {max }}$ values of 337 and 350 nm for $\mathrm{CH}_{2}=\mathrm{CHCMe}_{3}-\mathrm{TCNE}$ and $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CMe}_{3}-\mathrm{TCNE}$. We report values of $355,410,415,415,465$, and 535 nm for mixtures of TCNE and the hexenes $2 \mathbf{A}, 2 \mathrm{~B}, 2 \mathrm{C}, 2 \mathrm{D}, 2 \mathrm{E}$, and 2 F in DCM. The value of $\lambda_{\max }$ increases by about 60 nm per alkyl carbon atom attached to the ethylenic carbons in this sequence. A plot of $\lambda_{\text {max }}$ versus n, where n is the degree of alkyl substitution of the ethylenic group (i.e., the number of alkyl carbons attached to ethylenic carbons), yields a line with the equation
\[

$$
\begin{equation*}
\lambda_{\max }=\lambda_{0}+B n=292+60.6 n \tag{6}
\end{equation*}
$$

\]

Here λ_{0} is the hypothetical $\lambda_{\max }$ for ethylene-TCNE, and B is the increment in λ for each carbon bound to the ethylenic carbons; the correlation coefficient is 0.997 . When the IE values of the π orbitals of the cognate acyclic alkenes ${ }^{19} 2 \mathrm{~A}, 2 \mathrm{~B}, 2 \mathrm{C}$, and 2 F at 9.48, 8.97, 8.97, and 8.27 eV together with that of the cyclic alkene ${ }^{20} 2 \mathbf{D}$ at 9.12 eV are substituted into eq 1^{\prime}, they yield CT energies for the corresponding TCNE complexes equivalent to 365,415 , 415,513 , and 399 nm . These values are generally in good agreement with the experimental values above (355,410 , 415,535 , and 415 nm), indicating that the absorbances of the TCNE complexes of the hexanes do indeed arise from $\pi_{\mathrm{e}} \rightarrow \pi^{*}$ transitions. The high degree of correlation between $\lambda_{\text {max }}$ and n expressed in eq 6 is not surprising in view of the fact that Masclet et al. ${ }^{19}$ showed that the IEs of a set of alkenes decreases in seriatim with increasing n. It is interesting to note that the IE of ethylene calculated from eq 6 and $1^{\prime}(10.53 \mathrm{eV})$ is almost identical with the experimental value (10.52 eV) determined by Masclet et al. ${ }^{19}$

Merrifield and Phillips ${ }^{1}$ and Haselbach and Rossi ${ }^{3}$ reported ϵ values of 4760 and 2000 and K values of <0.01 and $0.03 \mathrm{~L} / \mathrm{mol}$ for 2D-TCNE. However, out attempts to analyze this system using stock solutions with a 20 -fold

[^6]excess of 2D yielded Scott lines with distinct curvature. We obtained a similar result in our analysis of $2 \mathbf{B}-\mathrm{TCNE}$. Scott analyses of 2A-, 2C--, and 2F-TCNE yield lines with only slightly positive slopes and with very large relative uncertainties; here K values range from 0.03 to $0.05 \mathrm{~L} / \mathrm{mol}$ and percent saturation values range from only 1 to 5 . The Scott lines of $2 \mathbf{E}-\mathrm{TCNE}$ and the nonconjugated dienes $2 \mathrm{G}-$ and $2 \mathrm{H}-\mathrm{TCNE}$ are negative, indicating that the interaction of isolated unstrained ethylenic groups with TCNE is extremely weak and results in the formation of CCT complexes. The low solubility of TCNE precluded studies of alkene-TCNE systems using excess TCNE. Reports of ϵ and K values from such systems must be regarded with caution in the absence of information on the saturation fraction range.

The magnitude of the K values of monoalkene-TCNE complexes is expected to depend upon the effectiveness of the overlap between the π_{e} and π^{*} orbitals of the ethylenic group and TCNE. The configuration of optimum overlap, that in which the plane of the atoms attached to the doubly bonded carbons in the alkene is perpendicular to the plane of TCNE (structure III), is strongly hindered by the projecting atoms. Consequently K values for al-kene-TCNE complexes tend to be very small.

III
b. Dienes. The $\lambda_{\text {max }}$ values for the TCNE complexes of the 1,5-dienes 2G-TCNE (345 nm) and 2H-TCNE (400 nm) are 10 nm lower than the $\lambda_{\max }$ values for $2 \mathbf{A}-$ TCNE (355 nm) and 2B-TCNE (410 nm), which have ethylenic groups with the same degrees of alkyl substitution. This indicates that there is no appreciable intramolecular through-space conjugation between the double bonds in these 1,5 -dienes and that TCNE interacts with the ethylenic groups in these molecules as if they were isolated from one another.

The situation is quite different in the case of the complex of the conjugated 2,4 -diene 2I. While conjugated dienes such as 1,3 -butadiene undergo rapid Diels-Alder additions with TCNE, ${ }^{21}$ the reaction of the tetramethylbutadiene, 2I, is slow enough to allow for the characterization of $2 I-T C N E$. The high values of $\lambda_{\max }(645 \mathrm{~nm})$ and $K(1.28 \mathrm{~L} / \mathrm{mol})$ compared to complexes of TCNE with nonconjugated double bonds (Figure 1) reflects both the lower IE and the greater accessibility of the π orbitals in the delocalized system.

Haselbach and Rossi ${ }^{3}$ reported that TCNE complexes of homoconjugated cyclic dienes such as 2 J had two absorbance bands, which they ascribed to CT interactions originating from the $b_{2}(\pi)$ and $a_{1}(\pi)$ orbitals of the diene. They also reported ϵ and K values of 21.50 and $0.06 \mathrm{~L} / \mathrm{mol}$ for 2J-TCNE. We attempted to characterize this complex using stock solutions in which C_{D} / C_{T} ratios were 10 and 450. The first system yields a Scott line with a correlation coefficient of 0.983 but with possible marginal curvature. We report ϵ and K values of 279 and $0.46 \mathrm{~L} / \mathrm{mol}$ for the 2J-TCNE system. It is interesting to note that our first

[^7]

Figure 1. Spectra of hexadiene-TCNE complexes.
ϵK value for $2 J-T C N E$ (130) is identical with that of Haselbach and Rossi. ${ }^{3}$ Our second determination, using a large excess of diene over TCNE, yields a distinctly curved line, indicating that this system probably contains a significant concentration of $2: 1$ complexes.
Mixtures of TCNE with the nonconjugated cyclic diene 2 K exhibit a single band with $\lambda_{\text {max }} 420 \mathrm{~nm}$ and yield a curved Scott line. The similarity in behavior of this system with those of $2 \mathrm{C}-$ and 2D-TCNE indicate that there is no homoconjugation in 2 K . This interpretation is in accord of that of Batich et al., ${ }^{22}$ who observed that $2 \mathbf{K}$ has a single band in its PE spectrum at 9.06 eV corresponding to a π-orbital ionization. When this value is substituted into eq 1^{\prime} it yields a $\lambda_{\text {max }}$ of 405 nm , which is in good agreement with the experimental value of 420 nm .
A mixture of TCNE and 2L (hexamethyl Dewar benzene or $1,2,3,4,5,6$-hexamethylbicyclo[2.2.0]hexa-2,5-diene) in DCM exhibited a purple color that intensified on standing. The spectrum of the freshly mixed solution had a sharp peak at 475 nm with a weak shoulder at 450 nm and a broad absorbance band with $\lambda_{\max } 535 \mathrm{~nm}$. The Scott analysis of the system yielded a strongly curved line. It appears as if a complex $2 \mathrm{~L}-\mathrm{TCNE}$ forms but that its formation is accompanied by an irreversible reaction. The system is further complicated by the photosensitivity of 2 L .
c. Summary and Conclusions. (1) TCNE forms CCT complexes with alkenes in DCM solutions; the spectral absorbance bands of these complexes arise from a $\pi_{e} \rightarrow$ π^{*} transition. The instability of the complexes is due to the orientation of the hydrogens which hinder effective overlap between the donor and acceptor orbitals.
(2) The $\lambda_{\text {max }}$ values of a series of alkylethylene-TCNE complexes increases by 60 nm per alkyl group attached to the ethylenic carbons, indicating that such alkyl groups donate electrons additively to adjacent π orbitals.
(3) Complexes of TCNE with nonconjugated dienes have characteristics that are similar to those of monoalkeneTCNE complexes, whereas TCNE complexes of conjugated butadienes have larger λ and K values.
3. Alkynes. No previous reports of alkyne-TCNE complexes have appeared in the literature.
a. Monoalkynes. We observed that the spectra of mixtures of TCNE with the monoalkylethynes 3A and 3C in DCM exhibit very weak shoulders with a half-height at

[^8]

Figure 2. Spectra of hexyne-TCNE complexes.
335 nm . When the IE values of the π orbitals of $3 \mathbf{A}$ and $3 \mathbf{B}, 10.10$ and $10.07 \mathrm{eV},{ }^{23}$ are substituted into eq 1^{\prime}, they yield $\lambda_{\max }$ values corresponding to 318 and 320 nm , which indicates that the shoulders are due to CT absorbances of $3 \mathrm{~A}-$ and $3 \mathrm{C}-\mathrm{TCNE}$. The spectra of complexes of TCNE with dialkylethynes $3 \mathbf{B}, \mathbf{3 D}$, and 3 E (Figure 2) consist of bands with maxima at 355,365 , and 365 nm . When the IE values of the orbitals of these compounds, 9.44, 9.39, and $9.32 \mathrm{eV},{ }^{23}$ are substituted into eq 1^{\prime}, they yield $\lambda_{\max }$ values of 368,375 , and 379 nm for the corresponding complexes $3 \mathbf{B -}$, $3 \mathrm{D}-$, and $3 \mathbf{E}-\mathrm{TCNE}$, indicating that these bands arise from $\pi_{e} \rightarrow \pi^{*}$ transitions in the complexes which originate in the π orbitals (π_{e}) of the alkyne molecule. A comparison of $\lambda_{\max }$ values of mono- and dialkylethyne complexes of TCNE indicates that the substitution of a second alkyl group on an ethyne carbon gives rise to a $\lambda_{\max }$ increase of $20-30 \mathrm{~nm}$.

Scott analyses of $3 \mathbf{B}-, 3 \mathrm{D}-$, and $3 \mathbf{E}-$ TCNE yield strongly curved lines when the stock solutions contain excess alkyne, indicating the formation of $\mathrm{D}_{2} \mathrm{~T}$ complexes. Consequently the characteristics of 3D-TCNE and 3ETCNE were determined by using the Foster-Matheson procedure, ${ }^{7}$ which in these cases yields K values with large uncertainties because of the low saturation ranges covered. The K values of the two complexes, 0.50 and $0.32 \mathrm{~L} / \mathrm{mol}$, are about 10 -fold larger than those obtained for corresponding alkene-TCNE complexes. This may be due to the absence of steric hindrance to the effective overlap of the π_{e} and π^{*} orbitals of the alkynes and TCNE.
b. Dialkynes. The spectrum of mixtures of TCNE with the 2,4-diyne 3F (Figure 2) consists of a band with $\lambda_{\max } 405 \mathrm{~nm}$, which indicates that there is conjugation between the triple bonds in 3F. This interpretation is supported by the PES studies of 3 F by Broglie et al., ${ }^{24}$ who attributed a peak at 8.91 eV to an orbital formed by the conjugation of the triple bonds. The IE value of 8.91 eV when substituted into eq 1^{\prime} yields a $\lambda_{\max }$ value of 420 nm for $3 F-T C N E$, which compares favorably with the experimental value of 405 nm .

The spectrum of a mixture of TCNE with 3 G consists of a shoulder that rises steeply at 375 nm ; this indicates that there is no conjugative interaction between the triple bonds in 3G.

[^9]

Figure 3. Scott graphs of benzene-TCNE and toluene-TCNE systems.

Figure 4. Scott graphs for benzene- $d_{6}-$ TCNE systems.
c. Summary and Conclusions. (1) Alkynes form CT complexes with TCNE that exhibit absorbance bands that arise from $\pi_{\mathrm{e}} \rightarrow \pi^{*}$ transitions.
(2) The substitution of a second alkyl on an ethyne group increases $\lambda_{\text {max }}$ of the ethyne-TCNE complex by $20-30 \mathrm{~nm}$.
(3) The K values of alkyne-TCNE complexes ($0.3-0.5$ $\mathrm{L} / \mathrm{mol}$) are about an order of magnitude higher than those of corresponding alkene-TCNE complexes, indicating that there is less steric interference in a triple bond-TCNE interaction.
(4) The $\lambda_{\max }$ value of $3 F$ at 405 nm indicates that there is conjugation between the triple bonds.
4. Benzene and Benzene- d_{6}. We report the results of investigations of the 4A-TCNE and 4B-TCNE systems that indicate that ϵ and K values do not vary with the concentration ratios of the reagent solutions.
a. Benzene. Merrifield and Phillips ${ }^{1}$ and Rossi et al. ${ }^{4}$ reported ϵ and K values for 4A-TCNE of 3570 and 0.10 $\mathrm{L} / \mathrm{mol}$ and 3310 and $0.11 \mathrm{~L} / \mathrm{mol}$ in DCM. The data for the Scott graph for our study of the $4 \mathrm{~A} /$ TCNE system are drawn from four runs that covered the entire range of feasible dilution ratios. The results of each run and the composite of the four runs are shown in Table I and Figure 3. The locus of the 32 points is a line with $r=0.982$. The ϵ and K values are in good agreement with previously reported values, and the linearity indicates that there are neglible quantites of $D_{2} T$ species in the saturation range covered in this study. Unfortunately the low K value precludes the experimental feasibility of extending the saturation range into the optimum region prescribed by Deranleau. ${ }^{11}$

Table II. Selected Values of Spectral Characteristics and Association Constants for Methylbenzene-TCNE Complexes in Dichloromethane at $21^{\circ} \mathrm{C}$

code	n^{a}	$\lambda_{\text {max }}, \mathrm{nm}$	$\epsilon, \mathrm{L} /(\mathrm{mol} \mathrm{cm})$	$K, \mathrm{~L} / \mathrm{mol}$	ϵK
$\mathbf{4 A}$	0	385	4410	0.10	440
$\mathbf{5 A}$	1	405	3890	0.19	740
$\mathbf{5 F}$	2	435	3950	0.55	2170
$\mathbf{5 G}$	2	435	2570	0.66	1700
$\mathbf{5 H}$	2	435	280	0.45	1300
$\mathbf{5 K}$	3	465	3560	1.29	4590
$\mathbf{5 L}$	3	455	2750	1.24	3410
$\mathbf{5 N}$	3	465	2460	1.56	3840
$\mathbf{5 Q}$	4	495	2300	4.43	10200
$\mathbf{5 R}$	4	495	2420	3.81	9220
$\mathbf{5 S}$	4	480	1920	4.27	8200
$\mathbf{5 T}$	5	510	3920	6.67	26200
$\mathbf{5 U}$	6	545	4110	20.74	85200
Degree of methyl substitution on the benzene ring.					

b. Benzene- d_{6}. The $4 \mathrm{~B}-\mathrm{TCNE}$ system in DCM (Figure 4) yields a linear Scott graph ($r=0.979$) at a $C_{\mathrm{D}} / C_{\mathrm{T}}$ of $33: 1$ and a calculated saturation range of $4-8 \%$. However, at a concentration ratio of 429:1, the Scott line is distinctly curved. This observation underscores another of Deranleau's cautions, i.e., "the smaller the range of saturation fraction being studied, the better will be the possibility that a straight line is obtained from either of these plots even if the entire experiment is represented by a highly curved line, which we note specifically is a general characteristic of equilibria involving other than 1:1 stoichiometry". In this instance the portion of the Scott graph covering the low saturation region appears to be reasonably linear because it covers a short segment of the entire curve and only neglible amounts of $\mathrm{D}_{2} \mathrm{~T}$ species are present at low saturation. At higher donor concentrations, the formation of $\mathrm{D}_{2} \mathrm{~T}$ species is forced, and the Scott graph appears strongly curved. Ho and Thompson ${ }^{25}$ have calculated K values for both DT and $\mathrm{D}_{2} \mathrm{~T}$ complexes of benzene, toluene, and p-xylene in heptane and carbon tetrachloride.
Merrifield and Phillips ${ }^{1}$ hypothesized and later investigators ${ }^{2,4}$ confirmed that the absorbance band of $\mathbf{4 A -}$ TCNE with $\lambda_{\text {max }} 385 \mathrm{~nm}$ arises from transitions of electrons from the $\mathrm{e}_{1 \mathrm{~g}}$ orbitals of 4 A to the π^{*} orbital of TCNE. The vertical IE of these orbitals from PES is $9.24 \mathrm{eV}{ }^{26}$ When this value is substituted into eq 1^{\prime}, it yields a $\lambda_{\text {max }}$ of 387 nm , which is in good agreement with the experimental value of 385 nm . Since the IE of 4 B is also $9.24 \mathrm{eV},{ }^{26}$ it is not surprising that the $\lambda_{\text {max }}$ and band half-width values of $4 \mathrm{~B}-\mathrm{TCNE}$ at $385-390 \mathrm{~nm}$ and $6000-6200 \mathrm{~cm}^{-1}$ are in close agreement with those of $4 \mathrm{~A}-\mathrm{TCNE}$, indicating that substitution of deuterium for hydrogen in benzene has little effect on the CT interaction with TCNE.
c. Summary and Conclusions. (1) The 4A-TCNE system is linear over the saturation range $0-22 \%$, indicating that $\mathrm{D}_{2} \mathrm{~T}$ species form in only negligible amounts.
(2) The $\mathbf{4 B}-\mathrm{TCNE}$ system is linear at saturation $<8 \%$ but exhibits a distinct curvature at higher saturation, indicating that the formation of $\mathrm{D}_{2} \mathrm{~T}$ species is forced at high $C_{\mathrm{D}} / C_{\mathrm{T}}$ values.
5. Alkyl- and Alkenylbenzenes. Accounts of the characteristics and analyses of the behavior of the TCNE complexes of benzene and 8 of 12 possible methylbenzenes are given in papers of Merrifield and Phillips ${ }^{1}$ and Rossi et al. ${ }^{4}$ Since these authors published neither C_{D} / C_{T} ratios

[^10] 609-610.
(26) Turner, D. W. Molecular Photoelectron Spectroscopy; Wiley-Interscience: London, 1970.

Table III. Spectral Characteristics and Association Constants for Monoalkylbenzene-TCNE Complexes in Dichloromethane at $21^{\circ} \mathrm{C}$

code	\% satn	$\lambda_{\text {max }}, \mathrm{nm}$	$\epsilon, \mathrm{L} /(\mathrm{mol} \mathrm{cm})$	$K, \mathrm{~L} / \mathrm{mol}$	ϵK
5A	$1-\mathbf{2 2}$	410	3890	0.19	740
5B	<1	410	1800	0.33	594
5C	$2-5$	410	2950	0.19	560
5D	$3-7$	413	3630	0.10	363
5E	$1-3$	415	8800	0.03	260

nor saturation fraction ranges employed in their studies, we reinvestigated the eight recorded methylbenzeneTCNE complexes and characterized the four remaining complexes and several alkylbenzene-TCNE complexes as well, using the highest feasible $C_{\mathrm{D}} / C_{\mathrm{T}}$ ratios and saturation fraction ranges. Our results generally agreed well with those of previous authors. A comprehensive summary of the alkylbenzene-TCNE complexes is given in Table I, and selected values for their characteristics are given in Table II. Some observations and generalizations about specific groups of these complexes follow.
a. Monoalkylbenzenes. Merrifield and Phillips ${ }^{1}$ and Rossi et al. ${ }^{4}$ reported ϵ and K values for the 5A-TCNE system of 3300 and $0.20 \mathrm{~L} / \mathrm{mol}$ and 2680 and $0.26 \mathrm{~L} / \mathrm{mol}$. Our analysis of this system (Table I) yields a composite Scott graph (Figure 3) with good linearity ($r=0.988$); we obtained ϵ and K values of 3890 and $0.19 \mathrm{~L} / \mathrm{mol}$ over a saturation range of $1-22 \%$.
Although each of three segments of the Scott graph for the 5B-TCNE system appear to be linear, the set of segments does not fit on a straight line. In such a case it is reasonable to assume that the there are appreciable quantities of $\mathrm{D}_{2} \mathrm{~T}$ present and that the characteristics of the DT complex are most accurately represented by the segment covering the lowest saturation range. The results of a Foster-Matheson plot for the system at $C_{\mathrm{D}} / C_{\mathrm{T}}=1$ are reported in Table I. Results obtained for systems at such low saturation levels have relatively poor reliability.
The K values of the monoalkyl-TCNE complexes (Table III) decrease progressively (n $>$ iso $>$ tert) with the bulk of the substituent alkyl showing the effect of steric hindrance between the donor and acceptor molecules. A study of n-alkylbenzene/TCNE systems ($n=1-5$) in cyclohexane by Emslie et al. ${ }^{27}$ showed that K values fell in the range $2.0-3.1 \mathrm{~L} / \mathrm{mol}$, indicating that chain length has little effect on steric hindrance. The relatively invariant values obtained for $\lambda_{\text {max }}(405-415 \mathrm{~nm})$ and $\Delta \nu_{1 / 2}\left(6500-6800 \mathrm{~cm}^{-1}\right)$ indicate that the CT energies of these complexes are only slightly affected by the bulkiness or length of the substituent alkyl group.
b. Dialkylbenzenes. The dimethylbenzene-TCNE systems yield linear Scott plots at saturation ranges of about $20-40 \%$. Values of K for $5 \mathrm{~F}-, \mathbf{5 G}$, and $5 \mathrm{H}-\mathrm{TCNE}$ obtained by various authors range from 0.4 to $0.7 \mathrm{~L} / \mathrm{mol}$. The K value obtained for $5 \mathrm{I}-\mathrm{TCNE}(0.16 \mathrm{~L} / \mathrm{mol})$ reflects the additional steric hindrance of the ethyl group relative to methyl. The effective absorbance of the highly hindered $\mathbf{5 J}-\mathrm{TCNE}$ system is so small that meaningful results were not obtained. The evidence for $\mathrm{D}_{2} \mathrm{~T}$ species for $5 \mathbf{H}-\mathrm{TCNE}$ in heptane and $\mathrm{CCl}_{4}{ }_{4}^{25}$ as well as the curved Scott graphs we obtained for several alkylbenzene/TCNE systems indicates that $\mathrm{D}_{2} \mathrm{~T}$ species are also present in DCM solutions.
c. Trialkylbenzenes. Scott lines for the $\mathbf{5 K}$ and the 5L-TCNE systems are strongly curved at high C_{D} / C_{T} ratios; at low ratios these systems yield K values of 1.29 and $1.24 \mathrm{~L} / \mathrm{mol}$.

[^11]

Figure 5. Scott graphs for mesitylene-TCNE systems.
The K values derived for $5 \mathrm{~N} / \mathrm{TCNE}$ systems at $C_{\mathrm{D}} / C_{\mathrm{T}}$ $=20,82$, and 1110 increase progressively from 0.77 and 1.07 to 1.56 . Although the Scott lines for each of the systems are straight over short ranges, the graph of the combined systems (Figure 5) shows distinct curvature, indicating that there is an abundance of $\mathrm{D}_{2} \mathrm{~T}$ species at high $C_{\mathrm{D}} / C_{\mathrm{T}}$ ratios. The ϵ and K values reported by other authors fall squarely within the range of our values.

The relatively low value of $K(0.27 \mathrm{~L} / \mathrm{mol})$ for $50-$ TCNE is consistent with the high intermolecular steric hindrance expected for this system. The highly hindered 50-TCNE system yields a strongly curved Scott line. However, the Foster-Matheson plot of 5M-TCNE with $C_{\mathrm{D}}=C_{\mathrm{T}}$ yields a surprisingly high K value of $1.70 \mathrm{~L} / \mathrm{mol}$.
d. Polyalkylbenzenes. Our values of ϵ and K for $\mathbf{5 S}-\mathrm{TCNE}$ are in fair agreement with those of other authors even though they were determined from a system in which TCNE was in excess. Studies of the 5Q-TCNE system using $C_{\mathrm{D}} / C_{\mathrm{T}}$ ratios of $1: 20$ and $19: 1$ yielded a straight Scott line in the first case and a curved Scott line in the second case. This provides further evidence that $\mathrm{D}_{2} \mathrm{~T}$ species are prevalent in alkylbenzene-TCNE systems, whereas DT_{2} species are not.
No evidence for $\mathrm{D}_{2} \mathrm{~T}$ species is observed in the 5 T and 5U-TCNE systems at saturation levels below 30%. Analysis of the 5V-TCNE system, however, yielded a Scott line with a negative slope, indicating that $5 \mathrm{~V}-\mathrm{TCNE}$ has an extremely small K value because of the steric interference of the six ethyl groups on the donor molecule. Castro et al. ${ }^{28}$ used a similar steric argument to account for the weakness of the interaction between 5 V and $1,3,5$-trinitrobenzene. The structurally related hexamethyl complex 5U-TCNE by contrast, has one of the highest K values (20.74) ever reported for a hydrocarbon complex of TCNE.
e. Cyclopropylbenzene. The spectrum of the $5 \mathbf{W}$ TCNE system in DCM (Figure 6) consists a of wide band with $\lambda_{\max } 405 \mathrm{~nm}$ and a strong shoulder sloping off at 450 nm . This band deconvolutes into two bands at 400 and 480 nm designated as λ_{1} and λ_{2}. Shudo et al. ${ }^{29}$ ascribes

[^12] 1958, 80, 2322-2326.

Figure 6. Spectra of phenylpropane-TCNE systems.
the first two ionizations at 8.61 and 9.12 eV in the PE spectrum of 5 W to (1) a b_{1}-like orbital conjugated with the $\mathrm{e}_{\mathrm{a}}^{*}$ orbital of the cyclopropyl ring ${ }^{30}$ and (2) an a_{2}-like orbital localized on the benzene ring. Shudo and Okamato ${ }^{31}$ attributed λ_{2} at 480 nm in the $5 \mathbf{W}$-TCNE spectrum to a $\pi \rightarrow \pi^{*}$ transition from the b_{1}-like orbital. The PE ionizations at 8.61 and 9.12 eV , which correspond to CT transisions at 460 and 400 nm , support their assignment. A Scott analysis of $5 \mathbf{W}-T C N E$ indicates that it is a weak complex ($K=0.16 \mathrm{~L} / \mathrm{mol}$) and that it is the only complex present in appreciable amounts up to 18% saturation.
f. Allylbenzene. The spectrum of $\mathbf{5 X}-\mathrm{TCNE}$ (Figure 6) with $\lambda_{\text {max }} 405 \mathrm{~nm}$ and $\Delta \nu_{1 / 2} 7100 \mathrm{~cm}^{-1}$ is both blueshifted and broader than the spectrum of 5C-TCNE with $\lambda_{\max } 415 \mathrm{~nm}$ and $\Delta \nu_{1 / 2} 6600 \mathrm{~cm}^{-1}$. This difference is explained by assuming not only that TCNE undergoes at CT interaction with the a_{2} and b_{1} orbitals in $\mathbf{5 X}$, as it does in the structurally related 5 C molecule but also that TCNE interacts independently with the terminal double bond in $\mathbf{5 X}$ as well, giving rise to an additional weak absorbance at about 350 nm . This interpretation is supported by the observation that $2 \mathbf{A}-T C N E$ has a $\lambda_{\text {max }}$ at 355 nm with about one-tenth the intensity of the CT bands of 5CTCNE. Furthermore, Rabalais and Colton ${ }^{32}$ reported PE ionizations for $5 \mathbf{X}$ at $8.85\left(\mathrm{~b}_{1}\right), 9.27\left(\mathrm{a}_{2}\right)$, and $9.71\left(\pi_{\mathrm{e}}\right) \mathrm{eV}$, which correspond to CT transitions of 430,385 , and 345 nm for $5 \mathbf{X}$-TCNE; these values agree well with the absorbances at 430,395 , and 355 nm and the orbital assignments proposed for 5X-TCNE.
g. Summary and Conclusions. The generalizations drawn from the discussion of methylbenzenes in this section can be assumed to apply to alkylbenzenes in which there are no pronounced steric or structural effects. Table II contains selected estimates of $\lambda_{\max }, \epsilon$, and K for the methylbenzene-TCNE complexes. These data have been used to validate the parameters of eq 7-9 below. Values that appear in parentheses in Table II have been calculated by using eq 8 .
(1) The absorbance spectra of TCNE complexes of the alkylbenzenes appear as single broad bands with the ex-

[^13]

Figure 7. Spectra of dimethylbenzene-TCNE complexes.
ception of the p-dialkyls $\mathbf{5 H}-, \mathbf{5 I}$-, and $\mathbf{5} \mathbf{J}$-TCNE, each of which has two distinct maxima (Figure 7). The single bands are composites of two strongly overlapping bands, λ_{1} and λ_{2}, which arise from electronic transitions between the a_{2} and b_{1} orbitals of the benzenoid ring (structures IV and V) and the π^{*} orbital of TCNE. The a_{2} and b_{1} orbitals

in $\mathbf{4 A}, \mathbf{5 N}$, and 5 U are degenerate; consequently λ_{1} and λ_{2} for the TCNE complexes of these donors are identical and their bands are relatively narrow. In all the other methylbenzenes, except 5G, the energy of the b_{1} orbitals is higher than that of the a_{2} orbital.
(2) Given that an electron-releasing methyl reference substituent R_{1} is attached to a benzenoid ring at position 1 corresponding to the node of the a_{2} orbital (structure IV) and the antinode of the b_{1} orbital (structure V), it is inferred from the analysis of the PE spectra that a methyl group R_{4}, para to R_{1}, elevates the energy of b_{1} relative to a_{2}. E.g, the IE values of a_{2} and b_{1} in $5 \mathbf{A}$ are 9.00 and 8.78 $\mathrm{eV},{ }^{33}$ a difference of 0.22 eV ; the corresponding IE values in 5 H are 9.14 and $8.43 \mathrm{eV},{ }^{34}$ a difference of 0.71 eV . In $\mathbf{5 A}$, the methyl group, by virtue of its location at the antinode of the b_{1} orbital and at the node of the a_{2} orbital, elevates the energy of the b_{1} orbital 0.22 eV relative to the a_{2} orbital. In $\mathbf{5 H}$, the p-methyl groups act in concert to elevate the energy of the b_{1} orbital by 0.71 eV relative to the a_{2} orbital.

Corresponding differences are observed in the spectra of $4 A^{-}, 5 A^{-}$, and $\mathbf{5 H}-\mathrm{TCNE}$. The value of $\lambda_{\text {max }}$ in $4 \mathrm{~A}-$ TCNE is 385 nm . The λ_{1} and λ_{2} values obtained by the deconvolution of the spectrum of $5 \mathrm{~A}-\mathrm{TCNE}$ are 395 and 425 nm , whereas the λ_{1} and λ_{2} values for $5 \mathrm{H}-\mathrm{TCNE}$ are about 390 and 465 nm . While the methyl substituents in these complexes have scarcely any effect on the values of

[^14]

Figure 8. $\lambda_{\max }$ vs number of methyls for methylbenzene-TCNE complexes.
λ_{1}, both the first methyl and the second p-methyl increase λ_{2} by about 40 nm each.
(3) Methyl substituents ortho or meta to R_{1} are expected to have a relatively smaller effect on the energy differences between a_{2} and b_{1} orbitals because such substituents interact moderately well with both types of orbitals. The IE values for the a_{2} and b_{1} orbitals for 5 F are 8.90 and 8.45 $\mathrm{eV}, 32$ giving a difference of 0.45 eV ; the corresponding values for 5 G are 9.03 and $8.55 \mathrm{eV},{ }^{33}$ giving a nearly identical difference of 0.48 eV . This shows that an o - or m-methyl substituent is about 65% as effective as a p methyl in splitting the energies of a_{2} and b_{1} orbitals.

Since the spectra of $\mathbf{5 F}$ - and $\mathbf{5 G - T C N E}$ are virtually identical, it is assumed that the values of λ_{1} and λ_{2} (about 420 and 455 nm), obtained by deconvoluting the spectrum of $5 \mathrm{~F}-\mathrm{TCNE},{ }^{4}$ are also the same. We note that both λ_{1} and λ_{2} are elevated $25-30 \mathrm{~nm}$ above their corresponding values in $5 \mathrm{~A}-\mathrm{TCNE}$, as expected from the previous consideration of the IE values of $\mathbf{5 A}, \mathbf{5 F}$, and $\mathbf{5 G}$. In summary: (a) the o - and m-methyl substituents effect increases of $25-30 \mathrm{~nm}$ in both λ_{1} and λ_{2} of methylbenzene-TCNE complexes; (b) the p-methyl substituent effects an increase of 40 nm in values of λ_{2} alone for methylbenzene-TCNE complexes.
(4) Examination of the $\lambda_{\max }$ values of alkylbenzeneTCNE complexes in Table II shows that $\lambda_{\max }$ values tend to increase as the number of substituents on the benzenoid ring increases. The plot of $\lambda_{\max }$ of the methylbenzeneTCNE complexes versus the number of methyls, n, attached to the benzene ring (Figure 8) yields a straight line with the equation

$$
\begin{equation*}
\lambda_{\max }=\lambda_{0}+B n=382+26.7 n \tag{7}
\end{equation*}
$$

Here λ_{0} is the extrapolated value of $\lambda_{\text {max }}$ for 4A-TCNE (experimental value $=385 \mathrm{~nm}$) and B is the mean increase in $\lambda_{\max }$ per additional methyl. The correlation coefficient for eq 7 is 0.994 . We note that $\lambda_{\max }$ is a characteristic of a composite band and is approximately equal to the average of λ_{1} and λ_{2}. The value of $\lambda_{\max }$ selected for $5 \mathrm{H}-$ TCNE is the average of the two maxima at 415 and 460 nm observed in its spectrum.
(5) The K values for the methylbenzene-TCNE complexes taken from Table II also increase with the degree of substitution n. A plot of $\log K$ versus n yields a straight line (Figure 9) described by the equation

$$
\begin{equation*}
\log K=\log K_{0}+B n=-1.04+0.40 n \tag{8}
\end{equation*}
$$

where K_{0} represents the association constant of $4 \mathrm{~A}-$ TCNE. The correlation coefficient is 0.994 . The calculated value

Figure 9. $\log K$ vs number of methyls for methylbenzene-TCNE complexes.

Figure 10. $\log K$ vs $\lambda-\lambda_{0}$ for methylbenzene-TCNE complexes.
of $K_{0}(0.090 \mathrm{~L} / \mathrm{mol})$ is close to the experimental values reported in the literature (0.10^{1} and $0.11^{4} \mathrm{~L} / \mathrm{mol}$); the calculated value of K for 5 A-TCNE ($0.225 \mathrm{~L} / \mathrm{mol}$) also agrees closely with the reported experimental values $\left(0.20^{1}\right.$ and $0.26^{4} \mathrm{~L} / \mathrm{mol}$).
(6) It follows that if both $\lambda_{\max }$ and $\log K$ are linearly related to n, there must also be a simple relationship between $\lambda_{\text {max }}$ and $\log K$. Such a relation was derived by Dewar and Thompson ${ }^{35}$ and expressed in the form

$$
\begin{equation*}
\log \left(K / K_{0}\right)=C\left(\lambda_{\max }-\lambda_{0}\right)=0.013\left(\lambda_{\max }-385\right) \tag{9}
\end{equation*}
$$

The λ_{0} and K_{0} values for $4 \mathrm{~A}-\mathrm{TCNE}$ are taken from Table II. The correlation coefficient is 0.992 . The favorable fit of the data (Figure 10) indicates a close relationship between the CT energy and thermodynamic stability of the complexes and suggests that the stabilities of these complexes are due primarily to CT interactions.
(7) Replacement of a methyl by a higher alkyl generally produces only a slight effect on $\lambda_{\max }$ of an alkylbenzeneTCNE complex as shown by a comparison of $5 \mathrm{~A}-, 5 \mathrm{H}-$, $\mathbf{5 L}-, 50-$, and $5 \mathrm{U}-\mathrm{TCNE}$ with each of their alkyl congeners. However, K values tend to decrease with the bulk or steric hindrance of the substituent alkyl group. The complexes of all tert-butylbenzenes with TCNE are CCT complexes because the bulky tert-butyl group is very effective in hindering the close overlap between the donor and acceptor orbitals.

[^15](8) Many of the alkylbenzene-TCNE systems studied to date show evidence for the presence of $\mathrm{D}_{2} \mathrm{~T}$ species at high $C_{\mathrm{D}} / \mathrm{C}_{\mathrm{T}}$ ratios; however, no evidence has been found for DT_{2} species.
6. Alkyldibenzenes, Biphenyls, and Bridged Biphenyls. This section covers complexes in which the donor molecule contains two benzenoid rings wherein the rings are (a) conjoined by a methylene and/or an imino group or (b) joined directly together.
a. Alkyldibenzenes. Scott analyses of the 6A-TCNE system at $C_{\mathrm{D}} / C_{\mathrm{T}}$ ratios of $10: 1$ and $58: 1$ yield different values of ϵ and K, indicating the presence of $\mathrm{D}_{2} \mathrm{~T}$ species. This system has a spectrum nearly identical with that of the 5A-TCNE ($K=0.19 \mathrm{~L} / \mathrm{mol}$) but has a larger K value ($1.20 \mathrm{~L} / \mathrm{mol}$) as expected when the donor molecule has two independent benzene rings. Similarly the spectra of 6Band $5 \mathrm{~V}-\mathrm{TCNE}$ are alike in all respects although the K value for $6 \mathrm{~B}-\mathrm{TCNE}(0.50 \mathrm{~L} / \mathrm{mol})$ is much larger than that of $5 \mathrm{~V}-\mathrm{TCNE}(0.16 \mathrm{~L} / \mathrm{mol})$.
The spectra of the ortho-disubstituted complexes 6CTCNE ($\lambda_{\max } 435 \mathrm{~nm}, \Delta \nu_{1 / 2} 6800 \mathrm{~cm}^{-1}$) and 5F-TCNE ($\lambda_{\text {max }}$ $435 \mathrm{~nm}, \Delta \nu_{1 / 2} 6400 \mathrm{~cm}^{-1}$) are similar except for an appreciable red-shifted broadening observed in 6C-TCNE. This broadening is evidence of a slight through-space interaction between the orbitals of the rings which are tilted toward each other at a dihedral angle of about 120°. Kobayashi et al. ${ }^{36}$ rationalized the PE spectrum of the structurally related triptycene molecule in terms of a through-space interaction between the b_{1}-like orbitals of its benzene rings. The K value for $6 \mathrm{C}-\mathrm{TCNE}(1.09 \mathrm{~L} / \mathrm{mol})$ is nearly double that of $5 \mathrm{~F}-\mathrm{TCNE}(0.67 \mathrm{~L} / \mathrm{mol})$ as expected for a complex with twice as many equivalent binding sites. The characteristics of 6D-TCNE are presented to show the effect of replacing a methylene in 6 C with an imino group. The nonbonded electrons of the imino nitrogen elevate the energy of the b_{1}-like orbitals, leading to a high value of λ_{2} (810 nm), and increase the basicity of the donor orbitals, leading to a value of $K(2.78 \mathrm{~L} / \mathrm{mol})$.
Cram and Bauer ${ }^{37}$ reported that the $\lambda_{\text {max }}$ values of a series of paracyclophane-TCNE complexes increase as the rings in the donor molecule are forced more closely together. We determined that one of these complexes, $6 \mathbf{E}-$ TCNE ($\lambda_{\max } 515 \mathrm{~nm}$), had ϵ and K values of 2210 and 2.60 $\mathrm{L} / \mathrm{mol}$, which are significantly different from those of the p-dimethyl complex 5H-TCNE ($\lambda_{1} 415, \lambda_{2} 460 \mathrm{~nm}$), with ϵ and K values of 2880 and $0.45 \mathrm{~L} / \mathrm{mol}$. The single narrow absorbance band of $6 \mathbf{E}-\mathrm{TCNE}$ indicates that the energies of both the a_{2} - and b_{1}-like orbitals of $6 \mathbf{E}$ are elevated equally by the strong compression of the π orbitals between the rings. This interpretation is supported by an analysis of the PE spectrum of 6 E reported by Kovac et al. ${ }^{38}$ The high K value of $6 \mathbf{E}-\mathrm{TCNE}$ indicates that the donor ability of the π orbitals of $6 \mathbf{E}$ is greatly enhanced by their compression.
b. Biphenyls and Bridged Biphenyls. The ϵ and K values derived for the $6 \mathrm{~F}-\mathrm{TCNE}$ system vary significantly with the concentration ratio of the stock solutions, indicating the presence of appreciable amounts of $\mathrm{D}_{2} \mathrm{~T}$ species. The spectrum of $6 \mathbf{F}-\mathrm{TCNE}$ (Figure 16), unlike that of $4 A-T C N E$, consists of two bands ($\lambda_{1} 390, \lambda_{2} 495 \mathrm{~nm}$). The first band arises from a transition originating in the a_{2}-like orbital which is unaffected by inter-ring interactions, whereas the second band arises from an extended π orbital
(36) Kobayashi, T.; Kubota, T.; Ezumi, K. J. Am. Chem. Soc. 1983, 105, 2172-2174.
(37) Cram, D. J.; Bauer, R. H. J. Am. Chem. Soc. 1959, 81, 5971-5977.
(38) Kovac, B.; Mohraz, M.; Heilbronner, E.; Boekelheide, V.; Hopf, H. J. Am. Chem. Soc. 1980, 102, 4314-4324.
which results from the combination of the b_{1}-like orbitals. This interpretation is supported by the PE studies of Ruscic et al. ${ }^{39}$

The absorbance bands of the 6G-TCNE $\left(\lambda_{1} 415, \lambda_{2} 565\right.$ nm) are red-shifted relative to $6 \mathrm{~F}-\mathrm{TCNE}$ ($\lambda_{1} 390, \lambda_{2} 495$ nm). The $25-\mathrm{nm}$ shift in λ_{1} is due to the inductive interaction of the methylene with the a_{2}-like orbital of 6 G . The $70-\mathrm{nm}$ shift in λ_{2} is partly due to the inductive interaction of the methylene with the b_{1}-like orbital. It is primarily due, however, to the low IE of the delocalized π orbital arising from the inter-ring conjugation of the b_{1}-like orbitals which are held in the optimal coplanar configuration by the bridging methylene. Suzuki ${ }^{40}$ estimated an interplanar angle of 20° for 6 F in solution from studies of UV spectra. Since this angle is far from that required for optimal conjugation, the value of λ_{2} for $6 F$ is much smaller than for 6 G .

The fact that the spectrum of $6 \mathrm{H}-\mathrm{TCNE}\left(\lambda_{1} 425, \lambda_{2} 560\right.$ nm) is strikingly similar to that of 6G-TCNE indicates that the two rings in 6 H are nearly coplanar in solution. This interpretation is supported by Suzuki, ${ }^{41}$ who arrived at the same conclusion through the study of UV spectrum of 6 H .

Characteristics of $\mathbf{6 I}-\mathrm{TCNE}^{6}$ are included because of its structural resemblance to 6G-TCNE. We note that $\lambda_{2}(600$ $\mathrm{nm})$ and $K(1.46 \mathrm{~L} / \mathrm{mol})$ are larger than the corresponding values for 6G-TCNE, reflecting the strong conjugation between the nonbonded electron pair of the imino nitrogens and the b_{1}-like orbitals of the benzene rings.
c. Summary and Conclusions. (1) The K values of TCNE complexes with donor molecules containing two unhindered benzenoid rings are significantly larger than those of structurally related complexes having only one ring, indicating that stability tends to increase with the availability of bonding sites.
(2) For TCNE complexes of donor molecules in which the electrons of two benzenoid rings are squeezed together, λ_{1}, λ_{2}, and K values tend to increase as the compression is increased.
(3) For TCNE complexes of biphenyl and its bridged derivatives, λ_{2} tends to increase as the dihedral angle between the two rings approaches 0°, the configuration of optimum conjugation between the b_{1}-like orbitals.
7. Styrenes. In the following discussion 7A and its derivatives are treated as molecules in which a vinyl group is attached to a benzene ring at a point where the a_{2} orbital has a node and the b_{1} orbital has an antinode. Conjugation between the ethylenic π orbital (π_{e}) and the b_{1} orbital is assumed to be optimal when the interplanar angle between the ethenyl carbons and the benzene ring is 0°. Steric factors that hinder the attainment of coplanarity also inhibit conjugation and prevent the conjugated orbital system from reaching its optimal potential energy.
a. Styrene. Scott analysis of the 7A-TCNE system (Figure 11) using $C_{\mathrm{D}} / C_{\mathrm{T}}$ ratios of $15: 1$ and $76: 1$ yield distinctly different values for ϵ and K, indicating the presence of significant amounts of $\mathrm{D}_{2} \mathrm{~T}$ species in solution. The spectrum of 7A-TCNE consists of two bands at $\lambda_{1} 395$ and $\lambda_{2} 480 \mathrm{~nm}$. The first band is due to an $\mathrm{a}_{2} \rightarrow \pi^{*}$ transition between 7A and TCNE; the second band arises from the MO formed by the combination of the π_{e} and b_{1} orbitals. This interpretation is supported by an analysis of the PE spectrum of 4 A by Rabalais and Colton, ${ }^{32}$ who assigned the ionization bands at 8.48 and 9.28 eV to the $\mathrm{b}_{1}-$ and

[^16]

Figure 11. Spectra of monomethylstyrene-TCNE complexes.
a_{2}-like orbitals. Substitution of these IE values into eq 1^{\prime} yields CT energies equivalent to 479 and 383 nm , which are close to the experimental values for $4 \mathrm{~A}-\mathrm{TCNE}$. Since PES studies of Maier and Turner ${ }^{42}$ indicate that the interplanar angle in 7 A is $0^{\circ}, \lambda_{2} 480 \mathrm{~nm}$ will serve as the value corresponding to optimal unhindered and unstrained $\pi_{\mathrm{e}}-\mathrm{b}_{1}$ conjugation in the styrene moiety of TCNE complexes.
b. Ring-Substituted Methylstyrenes. In the study of the TCNE complexes of these styrene derivatives, it is useful to compare them to their structural analogues among the methylbenzenes. In this sense the monomethylstyrenes 7B, 7C, and 7D are similar to the dimethylbenzenes $5 \mathrm{~F}, 5 \mathrm{G}$, and 5 H in which a methyl is replaced with a vinyl group; the dimethylstyrenes 7E and 7 F are analogous to 5 L , and 7 G is analogous to 5 K ; the tri- and pentamethylstyrenes 7 H and 7 I are analogous to $5 Q$ and $5 T$.
i. Monomethylstyrenes. Of the three monomethyl-styrene-TCNE systems only 7B- and 7D-TCNE yield definitive values of ϵ and K over a large saturation range. The 7B-TCNE system apparently contains significant amounts of $\mathrm{D}_{2} \mathrm{~T}$ species. Comparison of the values of the ϵK product of 7B- and 7D-TCNE (710 and 900) with those of the $\mathbf{5 F}-, \mathbf{5 G}$ - , and $\mathbf{5 H}-\mathrm{TCNE}$ (2170, 1730, and 1300) indicates that these styrenes have a lower effective absorbance than their methylbenzene analogues. However, the styrene complexes have much larger K values (2.82 and $2.66 \mathrm{~L} / \mathrm{mol}$) than the corresponding methylbenzene complexes ($0.55,0.57$, and $0.45 \mathrm{~L} / \mathrm{mol}$). This indicates that the vinyl group is more effective than methyl in releasing electrons to the benzene ring through its ability to conjugate with the b_{1} orbital.

The above inference is borne out by a study of the absorbance spectra of the complexes (Figure 11). The λ_{1} values of 7B-, 7C-, and 7D-TCNE (425, 425, and 395 nm) are nearly identical with those determined for $5 \mathrm{~F}-, 5 \mathrm{G}-$, and $5 \mathrm{H}-\mathrm{TCNE}$ (420,420 , and 390 nm), indicating that λ_{1} for the monomethylstyrene-TCNE complexes arises from an $\mathrm{a}_{2} \rightarrow \pi^{*}$ transition. It can also be inferred that the 0 and m-methyl groups in 7B and 7C donate electrons to the a_{2} orbitals through induction and/or hyperconjugation, whereas the p-methyl group in 7D does not.
The λ_{2} values of $7 \mathrm{~B}-, 7 \mathrm{C}-$, and 7D-TCNE (495, 505, and 525 nm) are somewhat higher than that of $7 \mathrm{~A}-\mathrm{TCNE}$ at

[^17]480 nm , indicating that the $0-, m$-, and p-methyls all donate electrons to the b_{1} orbitals but that their effectiveness increases in the order ortho < meta < para. Apparently the hyperconjugative-inductive contribution of the o methyl to the b_{1} orbital is partially offset by its steric inhibition of $\pi_{\mathrm{e}}-\mathrm{b}_{1}$ conjugation between the benzene ring and vinyl group. PES studies of 7B yield a value of 22° for the interplanar angle. ${ }^{40}$ The particular effectiveness of the p-methyl in donating electrons to the b_{1} orbitals is due to its location at the antinode of the orbital opposite the vinyl group.
The rules regarding the effect of methyl substitution on λ_{1} and λ_{2} of the methylbenzene-TCNE complexes (see section 5 g) apply to the monomethylstyrene-TCNE complexes with one exception. The sole difference is that an o-methyl, by strongly hindering the movement of the adjacent ethenyl group, has an inhibiting effect on the $\pi_{e}-b_{1}$ conjugation.
ii. Dimethylstyrenes. Of the three dimethylstyreneTCNE systems studied, 7F- and 7G-TCNE form stable solutions, whereas 7E-TCNE does not. A mixture of 7E and TCNE in DCM is rose colored; however, the color fades irreversibly within several minutes. Although no attempts were made to determine the nature of the reaction, it is believed that 7E and TCNE form a complex that precedes a 1,2 -cycloaddition reaction of the type which was

$$
\begin{array}{r}
\mathrm{X}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}=\mathrm{CH}_{2}+\mathrm{C}_{2}(\mathrm{CN})_{4} \rightarrow \mathrm{X}-\mathrm{C}_{6} \mathrm{H}_{4}-\underset{1}{\mathrm{CH}}-\underset{\mid}{\mathrm{CH}_{2}} \mathrm{C}_{2} \\
(\mathrm{CN})_{2} \mathrm{C}-\mathrm{C}(\mathrm{CN})_{2}
\end{array}
$$

reported by Williams et al. ${ }^{43}$ Here X is an electron-donating group. Evidence for the presence of 7E-TCNE in the freshly mixed solution comes from the fact that the two absorbance maxima at 435 and 525 nm are close to the values expected for a complex of TCNE with a styrene containing both an o - and a p-methyl group. The elec-tron-donating effect of the o-methyl on the b_{1} orbitals of $7 \mathbf{E}$ is apparently offset by steric inhibition of the $\pi_{\mathrm{e}}-\mathrm{b}_{1}$ conjugation; otherwise λ_{2} would be expected to have a value of about 550 nm .
The spectrum of $7 \mathrm{~F}-\mathrm{TCNE}$ consists of a broad band with $\lambda_{\text {max }} 475 \mathrm{~nm}$ and $\Delta \nu_{1 / 2} 7300 \mathrm{~cm}^{-1}$, which resolves into bands $\lambda_{1} 460$ and $\lambda_{2} 540 \mathrm{~nm}$. We note here the effect of an 0 - and a m-methyl on the value of λ_{1}, which is about 35 nm larger than the corresponding value in 7B-TCNE.

The spectrum of 7G-TCNE consists of a band with $\lambda_{\text {max }}$ 465 nm and $\Delta \nu_{1 / 2} 5700 \mathrm{~cm}^{-1}$, which strongly resembles that of $5 K-T C N E$ with $\lambda_{\text {max }} 465 \mathrm{~nm}$ and $\Delta \nu_{1 / 2} 5800 \mathrm{~cm}^{-1}$. These similarities are taken as evidence that the rotation of the vinyl group about the $\mathrm{C}-\mathrm{C}$ axis in 7 G is so severely restricted by the two o-methyls that it represses the $\pi_{\mathrm{e}}-\mathrm{b}_{1}$ conjugation to the extent that the effect of the vinyl group on the energy of the b_{1} orbital is no greater than that of an alkyl group. Furthermore the K value of 7G-TCNE ($1.15 \mathrm{~L} / \mathrm{mol}$) is smaller than that of $5 \mathrm{~K}-\mathrm{TCNE}(1.29 \mathrm{~L} /$ mol), indicating that the vinyl group, by projecting out of the plane of the ring, may hinder complex formation. This interpretation is supported by the results of the PES study of Maier and Turner, ${ }^{42}$ who estimated that the interplanar angle in 7 G is as high as 55°. Their ionization energy values of 8.65 and 8.45 eV , when substituted into eq 1^{\prime}, yield λ_{1} and λ_{2} values of 455 and 484 nm for 7G-TCNE, which are close to the values (455 and 480 nm) estimated by deconvolution of the $465-\mathrm{nm}$ band.
iii. Polymethylstyrenes. The spectrum of $7 \mathrm{H}-\mathrm{TCNE}$ consists of a band with $\lambda_{\max } 480 \mathrm{~nm}$ and $\Delta \nu_{1 / 2} 6500 \mathrm{~cm}^{-1}$,
which is strongly skewed toward the red. Visual comparison of the spectra of 7 G - and $7 \mathrm{H}-\mathrm{TCNE}$ shows that the λ_{2} value of the latter is about 30 nm larger than the former. These comparisons indicate that the p-methyl group in 7 H interacts primarily with the b_{1} orbital and has no appreciable effect on the energy of the a_{2} orbital.
The spectral characteristics of 7I-TCNE ($\lambda_{\text {max }} 540 \mathrm{~nm}$, $\Delta \nu_{1 / 2} 5300 \mathrm{~cm}^{-1}$) are almost indistinguishable from those of $5 \mathrm{U}-\mathrm{TCNE}$ ($\lambda_{\text {max }} 540 \mathrm{~nm}, \Delta \nu_{1 / 2} 5400 \mathrm{~cm}^{-1}$). This indicates that the a_{2} and b_{1} orbitals in $7 \mathbf{I}$ are essentially degenerate as they are in 5 U and that the severely restricted vinyl group, being rotated out of the plane of the ring and unable to conjugate with the ring orbitals, has about as much influence on the energy of the b_{1} orbital as an alkyl group. It is also of interest to note that the K values of $7 \mathbf{H}$ - and 7I-TCNE (2.33 and $5.31 \mathrm{~L} / \mathrm{mol}$) are significantly smaller than the K values of their methylbenzene analogues $5 \mathbf{R}$ - and $5 \mathbf{U}-$ TCNE (3.81 and $20.74 \mathrm{~L} / \mathrm{mol}$). This is further evidence that the projecting vinyl group may hinder the contact between the donor and TCNE molecules. The large value of $\lambda_{\text {max }}$ for $7 \mathrm{I}-\mathrm{TCNE}(540 \mathrm{~nm}$) relative to $7 \mathrm{H}-\mathrm{TCNE}(480 \mathrm{~nm})$ indicates that the two extra m-methyls in 7 I interact with both the a_{2} and b_{1} orbitals.
iv. Summary and Conclusions. As noted before, the spectrum of 4A-TCNE consists of a single narrow band at 385 nm arising from transitions from the degenerate a_{2} and b_{1} orbitals, whereas the spectrum of 7A-TCNE consists of two distinct bands at 395 and 480 nm . The $\pi_{e}-\mathrm{b}_{1}$ conjugation between the vinyl substituent and the benzene ring in 7A removes the degeneracy and has the effect of increasing λ_{2} by 95 nm with respect to $4 \mathrm{~A}-\mathrm{TCNE}$ while having virtually no effect on λ_{1}. The substitution of one or more methyl groups on 7A may increase both λ_{1} and λ_{2} by $0-75 \mathrm{~nm}$ per methyl relative to $7 \mathrm{~A}-\mathrm{TCNE}$ depending upon the location of the methyl group on the ring. The following generalizations regarding the effect of methyl substitution on λ_{1} and λ_{2} are based on the assumption that the vinyl group in styrene and its methyl derivatives is always coincident with the node of the a_{2}-like orbital and with the antinode of the b_{1}-like orbital.
(1) The substitution of a methyl para to an unhindered vinyl group increases λ_{2} of the TCNE complex by 50 nm but has no appreciable effect on λ_{1}, showing that a p methyl interacts only with the b_{1} orbital.
(2) The substitution of a methyl group meta to the vinyl group increases λ_{1} and λ_{2} of the TCNE complex by 45 and 15 nm per methyl, indicating that a m-methyl donates electrons more effectively to the a_{2} orbital.
(3) Substitution of methyl groups ortho to the vinyl group increases λ_{1} of the TCNE complex by 30 nm per methyl, indicating that o-methyls donate electrons to the a_{2} orbital.
However, substitution of a single methyl ortho to a vinyl group leads to an increase of only $5-15 \mathrm{~nm}$ in λ_{2} of the TCNE complex because the $\pi_{\mathrm{e}}-\mathrm{b}_{1}$ conjugation is partially inhibited by the steric hindrance of the methyl group itself which prevents the vinyl group from attaining the coplanar configuration required for optimum conjugation.
Substitution of two methyls ortho to a vinyl group causes such severe steric hindrance that it leads to complete inhibition of $\pi_{\mathrm{e}}-\mathrm{b}_{1}$ conjugation. Consequently, the elec-tron-releasing ability of the vinyl group is completely nullified, and the vinyl group has no more effect on changing λ_{2} than an alkyl group.
(4) While there is no simple relationship between the degree of methyl substitution, n, and $\log K$ or $\lambda_{\text {max }}$ as there is for the methylbenzene-TCNE complexes, the product ϵK is seen to increase uniformly with n. It is noteworthy

Figure 12. Spectra of α, β-methylstyrene-TCNE complexes.
that K values of TCNE complexes of ring-substituted methylstyrenes are larger than K values of cognate me-thylbenzene-TCNE complexes that have the same total number of substituents on the benzene ring, except in those cases where the styrene has two o-methyls. This suggests that a vinyl group that is constricted by two omethyls projects so far out of the plane of the benzene ring that it hinders the interaction of TCNE with the donor orbitals. The lack of correlation between n and $\log K$ may be due to such a steric factor.
c. Chain-Substituted Methylstyrenes. This section deals with TCNE complexes of methylstyrenes in which the methyls are substituted exclusively on the vinyl group. The compound 1-phenyl-1-cyclohexene, 7 L , is included in this section because of its close structural similarity to α, β-dimethylstyrene.
i. α - and trans- β-Methylstyrene. The spectra of 7Jand $7 \mathrm{~K}-\mathrm{TCNE}$ (Figure 12) are similar to that of 7ATCNE. In all three cases, λ_{1} values are nearly identical at 395-400 nm, indicating that these bands arise from a_{2} $\rightarrow \pi^{*}$ transitions which are unaffected by the methyl substituents on the ethenyl group. However the λ_{2} values for $7 \mathrm{~A}-, 7 \mathrm{~J}-$, and $7 \mathrm{~K}-\mathrm{TCNE}$ are 480,495 , and 530 nm , which indicates that the energy of the b_{1} orbital is sensitive to the location of the methyl groups.

In section 2 it was noted that $\lambda_{\max }$ for alkene-TCNE complexes increased by $60-65 \mathrm{~nm}$ per alkyl substituent on the ethenyl moiety. If this pattern were followed by the chain-substituted methylstyrenes, we would expect to observe λ_{2} values of $540-545 \mathrm{~nm}$ for both $7 \mathbf{J}$ - and 7 K TCNE. In this respect the value of λ_{2} for 7L-TCNE (530 nm) has the expected value, and we can infer that the trans- β-methyl group in $\mathbf{7 K}$ is donating electrons to the $\pi_{\mathrm{e}}-\mathrm{b}_{1}$ orbital. The relatively low value of λ_{2} for 7J-TCNE (495 nm) suggests that $\pi_{\mathrm{e}}-\mathrm{b}_{1}$ conjugation is inhibited by steric interference between the α-methyl group and the o-hydrogens on the benzene ring. This conjecture is supported by the PES studies of Maier and Turner, ${ }^{42}$ which yield values of 38° and 0° for the interplanar angles in 7 J and 7 K .
ii. 1-Phenyl-1-cyclohexene and β, β-Dimethylstyrene. These compounds are juxtaposed because they permit a comparison of the relative steric effects of the α-methyl and the cis- β-methyl groups on $\pi_{\mathrm{e}}-\mathrm{b}_{1}$ conjugation. The spectrum of $7 \mathrm{~L}-\mathrm{TCNE}$ consists of two bands at $\lambda_{1} 400$ and $\lambda_{2} 560 \mathrm{~nm}$. The first band is due to an $\mathrm{a}_{2} \rightarrow \pi^{*}$ transition. The second band is 70 nm larger than λ_{2} for $\mathbf{7 J}-$ TCNE (490 nm) as expected. The λ_{2} band for $\mathbf{7 M}$ -

TCNE (545 nm) is 15 nm smaller than λ_{2} for $7 \mathrm{~L}-\mathrm{TCNE}$. This suggests that cis- β-methyl of $\mathbf{7 M}$ interacts sterically with the o-hydrogens of its benzene ring to inhibit $\pi_{\mathrm{e}}-\mathrm{b}_{1}$ conjugation. Support for this interpretation comes from the UV studies of Suzuki, ${ }^{44}$ who estimated an interplanar angle of 40° for 7 M which was attributed to steric factors.
iii. Summary and Conclusions. Analysis of the spectra of $\mathbf{7 J}-, 7 \mathrm{~K}-, \mathbf{7 L}$-, and $\mathbf{7 M}-T C N E$ leads to the following generalizations concerning the chain-substituted methylstyrenes.
(1) Methyls substituted on the ethene group of a styrene have no effect on λ_{1}, indicating that they do not release electrons to the a_{2} orbital.
(2) A trans- β-methyl increases λ_{2} by 50 nm relative to λ_{2} in 7A-TCNE, indicating that it donates electrons to the $\pi_{\mathrm{e}}-\mathrm{b}_{1}$ orbital of the styrene derivative.
(3) The substitution of an α - or cis- β-methyl on the vinyl group results in an increase in λ_{2} of only $15-30 \mathrm{~nm}$ relative to λ_{2} in $7 \mathrm{~A}-\mathrm{TCNE}$ because the steric interaction between the methyl and the o-hydrogens inhibits $\pi_{\mathrm{e}}-\mathrm{b}_{1}$ conjugation.
d. Ring- and Chain-Substituted Alkylstyrenes. This section deals with TCNE complexes of styrene derivatives that have alkyl or alkenyl substitution on both the benzene ring and the vinyl group.
i. Indene and 1,2-Dihydronaphthalene. The vinyl group in each of the compounds 7 N and 70 is part of a cyclic system attached to ortho positions on a benzene ring which fixes the angle between the ethenyl group and the benzene ring. In $\mathbf{7 N}$ the methylene group serves a dual function as both an o - and a cis- β-substituent. In addition it locks the double bond and benzene ring into the coplanar conformation required for optimal conjugation. The spectrum of $7 \mathbf{N}-\mathrm{TCNE}$ has λ_{1} and λ_{2} bands at 420 and 540 nm , which indicates that the methylene group donates electrons to both the a_{2} orbital of the benzene ring and to the conjugated $\pi_{\mathrm{e}}-\mathrm{b}_{1}$ MO. This conclusion is supported by the orbital assignments of PE ionizations of 7 N by Güsten et al.; ${ }^{45}$ their IE values of 8.93 and 8.14 eV correspond to λ_{1} and λ_{2} values of 420 and 536 nm for 7 N TCNE, which are close to the experimental values.

In 70 two conjoined methylenes bridge the ortho position on the benzene ring and the cis- β position of the vinyl group. The spectrum of 70-TCNE has λ_{1} and λ_{2} bands at 425 and 565 nm . This indicates that the two methylenes serve the same function as the methylene in 7 N and that the $\pi_{\mathrm{e}}-\mathrm{b}_{1}$ conjugation is nearly optimal. The K values of $\mathbf{7 N}-$ and $70-\mathrm{TCNE}$ are practically identical, reflecting the great similarity between the two donors.
ii. Diisopropenylbenzenes. The spectra of 7P- and 7Q-TCNE can be best understood in reference to the spectrum of $7 \mathrm{~J}-\mathrm{TCNE}$ when 7 J is regarded as a monoisopropenyl derivative of benzene. The spectrum of $\mathbf{7 J}$ TCNE consists of two bands at 400 and 490 nm , the first of which is due to an $\mathrm{a}_{2} \rightarrow \pi^{*}$ transition, and the second due to a transition from the b_{1}-like orbital. The compound 7Q contains two p-isopropenyl groups, which are expected to conjugate cooperatively and exclusively with the b_{1} orbital. Consequently 7Q-TCNE should exhibit a band at about 400 nm and a second narrow band at about 580 nm . The actual spectrum of $7 \mathrm{Q}-\mathrm{TCNE}$ consists of a weak shoulder at 410 nm and a stronger symmetrical band at 575 nm with $\Delta \nu_{1 / 2} 5000 \mathrm{~cm}^{-1}$.

The compound $7 \mathbf{P}$ contains two m-isopropenyl groups, one of which is expected to conjugate strongly with the b_{1} orbital and the other to conjugate less strongly with the

[^18]

Figure 13. Spectra of polyphenylethylene-TCNE complexes.
a_{2} orbital. Consequently the spectrum of 7P-TCNE should consist of two bands in the vicinity of 500 nm . The actual spectrum of 7P-TCNE exhibits a broad ($\Delta \nu_{1 / 2} 6800$ cm^{-1}) symmetrical band at 505 nm . The width and shape of this band indicate that it is a composite of two bands, λ_{1} and λ_{2}, at about 480 and 530 nm , which are attributed to transitions from the a_{2} and b_{1}-like orbitals.

The K value of $7 \mathbf{P}-T C N E(1.70-2.35 \mathrm{~L} / \mathrm{mol})$ is seen to increase with the degree of saturation; however, it is in the normal range for a methylstyrene-TCNE complex. The K value for $\mathbf{7 Q}-\mathrm{TCNE}(7.26 \mathrm{~L} / \mathrm{mol}$) is unusually large, indicating that the b_{1}-like orbital in $7 \mathbf{Q}$ is a strong electron donor.
iii. Summary and Conclusions. (1) A vinylic group locked into a coplanar conformation on a benzene ring conjugates optimally with the b_{1} orbital of the ring.
(2) In molecules such as indene, which contains a vinylic side chain attached at both ends to ortho positions on a benzene ring, the double bond conjugates with the b_{1} orbital of the benzene ring and the alkyl end of the side chain interacts with the a_{2} orbital of the benzene ring.
(3) Vinylic side chains para to one another conjugate cooperatively with the b_{1} orbital of the benzene ring to which they are mutually attached. Vinylic groups meta to one another conjugate with both the a_{2} and b_{1} orbitals.
8. Polyphenylalkenes. Ethylene derivatives with two or more phenyls attached to the double-bonded carbons are considered in this section.
a. Diphenylethylenes. Laarhoven and Nivard ${ }^{46}$ first reported the characteristics of $8 \mathrm{~B}-$ and $8 \mathrm{C}-\mathrm{TCNE}$. However, we obtained definitive values of ϵ and K over an extended saturation range for $8 \mathrm{C}-\mathrm{TCNE}$ alone, and even in this case we were unable to reproduce the published values. Scott analyses of the $\mathbf{8 A}$ - and $\mathbf{8 C - T C N E}$ systems indicate that significant amounts for the $\mathrm{D}_{2} \mathrm{~T}$ species are present. However, ϵ and K values for 8B-TCNE (2350-2620 and $0.18 \mathrm{~L} / \mathrm{mol}$) are nearly identical at $C_{\mathrm{D}} / C_{\mathrm{T}}$ values of 15 and 97.

The spectra of $\mathbf{8 A -}, \mathbf{8 B}$-, and $\mathbf{8 C - T C N E}$ (Figure 13) have values of $\lambda_{1}(400,390$, and 400 nm$)$ that are nearly identical with those of $7 \mathrm{~A}-\mathrm{TCNE}(390 \mathrm{~nm})$, indicating that the λ_{1} bands arise from independent $a_{2} \rightarrow \pi^{*}$ transitions in each of the phenyl rings which are not influenced by the ethylenic group. This assignment is supported by the
(46) Laarhoven, W. H.; Nivard, R. J. F. Rec. Trav. Chim. Pays-Bas 1965, 84, 1478-1495.

PES study of Güsten et al. ${ }^{47}$ who obtained IE values of $9.03,8.94$, and 9.06 eV for the a_{2}-like orbitals of $8 \mathbf{A}, 8 \mathbf{B}$, and 8 C . When these values are substituted into eq 1^{\prime}, they yield λ_{1} values of 409,419 , and 405 nm for $8 \mathbf{A}-, 8 \mathrm{~B}-$, and 8C-TCNE which agree favorably with the experimental values.

The λ_{2} values of $8 \mathbf{A}-, 8 \mathbf{B}$-, and $8 \mathbf{C}-$ TCNE (510,530 , and 595 nm) are not only different from each other but also strikingly different from that of 7A-TCNE (480 nm) as well. The differences in λ_{2} values of $8 B-$ and $8 C-T C N E$ (530 and 595 nm) can be accounted for by assuming that the cis-diphenyl groups in 8B do not achieve coplanarity because they interact sterically, whereas the more widely separated trans-diphenyl groups of 8C do achieve coplanarity. This conjecture is supported by the PES study of Maier and Turner, ${ }^{42}$ who estimated interplanar angles of 35° and 0° for 8 B and 8 C . The λ_{2} value of $8 \mathrm{~A}-\mathrm{TCNE}$ relative to that of 7A-TCNE indicates that the b_{1}-like orbitals of each of the phenyls conjugates with the π_{e} orbital to form an extended π orbital. However the steric interference between the gem-diphenyls prevents them from simultaneously attaining the coplanar configuration required for optimal conjugation. This interpretation is also supported by the PES study of 8 A by Maier and Turner, ${ }^{42}$ which yields an angle of 40° between the planes of the ethylenic and phenyl groups.

When the IE values of Güsten et al. ${ }^{47}$ for the b_{1}-like orbitals of $8 \mathbf{A}, 8 \mathrm{~B}$, and $8 \mathrm{C}(8.23,8.11$, and 7.79 eV) are substituted into eq 1^{\prime}, they yield λ_{2} values of 520,542 , and 610 nm for $8 \mathrm{~A}^{-}, 8 \mathrm{~B}-$, and $8 \mathrm{C}-\mathrm{TCNE}$, which compare favorably with the trend in experimental values of 510,530 , and 595 nm . We conclude that the λ_{2} value of $8 \mathrm{~A}-\mathrm{TCNE}$ (595 nm) is characteristic of the condition of optimal $\mathrm{b}_{1}-\pi_{\mathrm{e}}-\mathrm{b}_{1}$ conjugation in diphenylethylenes and that the lesser values of λ_{2} obtained for 8 A - and $8 \mathrm{~B}-\mathrm{TCNE}$ are symptomatic of conjugation inhibited by steric interactions of gem- and cis-phenyls.
b. \boldsymbol{N}-Benzylideneaniline and Azobenzene. These compounds, each containing doubly bound nitrogen, are included in the discussion at this point because they are isoelectronic and isostructural with the 1,2-diphenylbenzenes.

The spectrum of $\mathbf{8 D}-T C N E$ consists of a single band with $\lambda_{\max } 495 \mathrm{~nm}$, which corresponds closely to an ionization peak in the PE spectrum of 8 D at 8.27 eV that Goetz et al. ${ }^{48}$ attributed to the MO resulting from $\pi_{\mathrm{e}}-\mathrm{b}_{1}$ conjugation. Reliable values of $\epsilon(228)$ and $K(3.08 \mathrm{~L} / \mathrm{mol})$ are obtained only when TCNE is used in excess. The high value of K is characteristic of TCNE complexes of nitro-gen-containing aryls.

Therefore it is surprising that spectra of mixtures of azobenzene and TCNE in DCM at a variety of concentrations and concentration ratios show no evidence of complex formation between 400 and 900 nm , although a band at 480 nm is expected on the basis of the IE value for azobenzene of 8.46 eV reported by Kobayashi et al. ${ }^{49}$
c. Ditolylethylenes. The compounds $8 \mathbf{E}$ and 8 F are of interest because of their structural relationship with 8 A . The spectrum of $8 \mathrm{E}-\mathrm{TCNE}$ consists of a strongly skewed band with $\lambda_{\max } 435 \mathrm{~nm}$ which resolves into two bands λ_{1} 425 nm and $\lambda_{2} 510 \mathrm{~nm}$. The value of λ_{1} for $8 \mathbf{E}-\mathrm{TCNE}$, which is about 30 nm higher than λ_{1} of $8 \mathbf{A}-\mathrm{TCNE}\left(\lambda_{1} 395\right.$, $\lambda_{2} 510 \mathrm{~nm}$), indicates that the o-methyl of 8 E releases
(47) Güsten, H.; Klasinc, L.; Novak, I.; Sanjek, M. Z. Naturforsch. 1984, 39a, 1230-1234.
(48) Goetz, H.; Marschner, F.; Juds, H. Tetrahedron 1947, 30 , 1133-1136.
(49) Kobayashi, T.; Yokota, K.; Nagakura, S. J. Electron Spectrosc. 1975, 6, 167-170.

Figure 14. Spectra of α, ω-polyphenylpolyene-TCNE complexes.
electrons primarily to the a_{2} orbital.
The spectrum of $8 \mathbf{F}-\mathrm{TCNE}$ consists of a shoulder, λ_{1} at 400 nm , and a band with λ_{2} at 565 nm . The value of λ_{2}, which is about 55 nm higher than that of λ_{2} for $8 \mathbf{A}^{-}$ TCNE, indicates that the p-methyl of $8 \mathbf{F}$ releases electrons primarily to the b_{1} orbital. The λ_{1} and λ_{2} values of both $\mathbf{8 E}$ - and $\mathbf{8 F}-\mathrm{TCNE}$ are in agreement with expectations based on previous results.
d. Iminostilbene. The compound 8 G is a derivative of 8 B in which the $0,0^{\prime}$ positions are joined by an imino bridge. The spectrum of $8 G-T C N E$ consists of a broad band at $\lambda_{2} 780 \mathrm{~nm}$, which is probably due to $\mathrm{n}-\mathrm{b}_{1}$ conjugation between the nonbonded electron pair (n) of the nitrogen and the benzene rings. There is no evidence for the λ_{1} band or for the nature of the interaction of the ethenyl group with the benzene ring since 8 G itself has a strong absorbance cutoff at 500 nm . The high K value of 8G-TCNE ($7.03 \mathrm{~L} / \mathrm{mol}$) is characteristic of arylamines.
e. Tri- and Tetraphenylethylene. The values of ϵ and K given for $\mathbf{8 H}$ - and 81-TCNE are not highly reliable because they are obtained from solutions that cover a small saturation range. Nevertheless, these figures suggest that 8 H and 8 I behave much like 8 B in their interactions with TCNE. As noted in section 8a, an additional unhindered phenyl attached to the ethenyl carbons of an ethylene derivative increases the λ_{2} value its TCNE complex by about 100 nm . The fact that the λ_{2} values of $8 \mathbf{H}-, 8 \mathbf{I}-$, and 8C-TCNE (Figure 13) are nearly identical (595, 600, and 595 nm) indicates that the conjugation between π_{e} orbital and the b_{1} orbitals of the third and fourth phenyls of 8 H and 8 I are strongly inhibited by steric hindrance. This interpretation is supported by the UV studies of Suzuki ${ }^{50}$ and the MO calcualtions of Favini and Simonetta, ${ }^{51}$ who estimated interplanar angles of 39° and 48° in 8 H and 8 I . However, our conclusions are strongly contradicted by the PE studies of Güsten et al. ${ }^{47}$ they recorded IE values of 7.54 and 7.18 eV for $\mathbf{8 H}$ and $\mathbf{8 I}$, which suggest that there is no significant effect on orbital energies due to crowding of gem-diphenyl groups. Their IE values, when substituted into eq 1^{\prime}, yield $\lambda_{\max }$ values of 707 and 807 nm for $8 \mathbf{H}-$ and 8I-TCNE, which are much higher than our experimental values.
f. trans- α, ω-Diphenylpolyenes. It is useful to consider these compounds as part of a series with the formula $\mathrm{Ph}(\mathrm{CH}=\mathrm{CH})_{n} \mathrm{Ph}(n=0,1,2,3, \ldots)$. The first two mem-

[^19]Table IV. Spectral Characteristics of $\mathbf{P h}(\mathrm{CH}=\mathbf{C H})_{n} \mathbf{P h}$-TCNE Complexes in Dichloromethane

code	n	$\lambda_{\max }(\operatorname{exptl}), \mathrm{nm}$	$I_{\mathrm{d}},{ }^{a} \mathrm{eV}$	$\lambda_{\max }($ calcd $),{ }^{b} \mathrm{~nm}$
$\mathbf{6 F}$	0	500	8.32^{c}	504
$\mathbf{8 C}$	1	580	7.94^{d}	576
$\mathbf{8 J}$	2	665	7.56^{e}	673
$\mathbf{8 K}$	3	740	7.33^{e}	748
$\mathbf{8 L}$	4	>750	7.19^{e}	803

${ }^{a}$ Ionization energy of donor molecule from PE spectrum. ${ }^{b}$ Calculated from eq 1. ${ }^{\text {c }}$ Reference $38 .{ }^{d}$ Reference $42 .{ }^{e}$ Reference 52.
bers of this series, 6F and 8C, have been discussed previously. The remaining compounds, $\mathbf{8 J}, 8 \mathrm{~K}$, and 8 L form blue or green solutions with TCNE that fade rapidly due to irreversible Diels-Alder reactions. The spectra of 8JJand $8 \mathbf{K}-$ TCNE (Figure 14) exhibit broad absorbance curves with maxima at 675 and 775 nm . The absorbance values used in the Scott calculations were obtained by mixing each solution rapidly in a cuvette, plotting the absorbance decay at $\lambda_{\text {max }}$ versus time, and extrapolating absorbance to zero time. The times required for absorbance to decay to one-half intensity for the 8 J - and 8 K TCNE systems were about 3 and 1 min , respectively. The color of the $8 \mathrm{~L}-\mathrm{TCNE}$ system fades within a few seconds; however, the initial green color of the solution indicates the presence of $8 \mathrm{~L}-\mathrm{TCNE}$ with $\lambda_{\max }>750 \mathrm{~nm}$. Under the circumstances it was possible to obtain reliable values of ϵ and K for 8J-TCNE alone.
Hudson et al. ${ }^{52}$ reported IE values of 7.56 and 7.33 eV for $8 \mathbf{J}$ and $8 \mathbf{K}$; they attributed each of these ionizations to an extended π orbital formed by the conjugation of all of the π_{e} and b_{1} orbitals in the molecule. Substitution of the above IE values into eq 1^{\prime} yields $\lambda_{\max }$ values of 673 and 748 nm for $8 \mathbf{J}$ - and 8 K-TCNE, which compare favorably with the experimental values 665 and 740 nm . This indicates that the absorbance bands of $8 \mathbf{J}$ - and $8 \mathbf{K}-\mathrm{TCNE}$ arise from transitions involving $\mathrm{b}_{1}-\pi_{\mathrm{e}}-\mathrm{b}_{1}$ orbitals.

The data in Table IV show that $\lambda_{\text {max }}$ values of complexes of the first four members of the $\mathrm{Ph}(\mathrm{CH}=\mathrm{CH})_{n} \mathrm{Ph}-\mathrm{TCNE}$ series tend to increase uniformly with chain length and that $\lambda_{\text {max }}$ values calculated from IEs agree well with experimental values. However, it is not advisable to extend correlations of $\lambda_{\max }$ with chain length beyond $n=4$, for as Hudson et al. ${ }^{52}$ have shown, IE values rapidly converge to a limit of $7.0-7.2 \mathrm{eV}$ for higher members of the series.
g. 1,1,4,4-Tetraphenyl-1,3-butadiene. The 8M-TCNE system (Figure 14), in contrast to that of $8 \mathbf{J}-\mathrm{TCNE}$, is stable since the two additional phenyls appear to provide enough steric hindrance to completely hinder the DielsAlder addition. The K value of $\mathbf{8 M}-\mathrm{TCNE}(1.80 \mathrm{~L} / \mathrm{mol})$ is of the same magnitude as those of complexes of the related conjugated dienes 2I- and 8J-TCNE (1.28 and 2.19 $\mathrm{L} / \mathrm{mol}$). The $\lambda_{\text {max }}$ of $8 \mathrm{M}-\mathrm{TCNE}$ is 730 nm . The fact that this value is only 55 nm higher than $\lambda_{\max }$ for $8 \mathrm{~J}-\mathrm{TCNE}$ indicates that there is inhibition of $\pi_{\mathrm{e}}-\mathrm{b}_{1}$ conjugation due to steric interactions between the gem-phenyls.
h. Summary and Conclusions. (1) Each of the di-phenylethylene-TCNE complexes have two absorbance maxima: λ_{1} at $390-400 \mathrm{~nm}$ and λ_{2} at $510-595 \mathrm{~nm}$, which are attributed to $\mathrm{a}_{2} \rightarrow \pi^{*}$ and $\mathrm{b}_{1} \rightarrow \pi^{*}$ transitions. The λ_{2} values increase as steric interference between the phenyls decrease in the order geminal $>$ cis $>$ trans. The steric trend is dependent upon the ease with which the phenyls can attain coplanarity with ethylenic carbons to facilitate $\pi_{e}-\mathrm{b}_{1}$ conjugation.
(52) Hudson, B. S.; Ridyard, J. N. A.; Diamond, J. J. Am. Chem. Soc. 1976, 98, 1126-1129.

Figure 15. Spectra of styrene-TCNE and phenylethyne-TCNE.
(2) The α, ω-diphenylpolyalkene-TCNE complexes have one absorbance maximum above 675 nm , which is attributed to transitions arising from the $\pi_{e}-b_{1}$ conjugated orbitals. The $\lambda_{\text {max }}$ values of these complexes increase as the number of conjugated double bonds, n, increases when n $=0,1,2$, and 3 .
(3) The rate of reaction of TCNE with the α, ω-diphenyland $\alpha, \alpha, \omega, \omega$-tetraphenylalkenes increases with n and decreases with phenyl substitution.
9. Phenylalkynes. In the following discussion the TCNE complexes of $9 \mathrm{~A}, \mathbf{9 B}, 9 \mathrm{C}$, and 9 D are compared with those of the cognate phenylethylenes $7 \mathrm{~A}, 7 \mathrm{~K}, 8 \mathrm{C}$, and 8 J . Although evidence for the formation of $9 \mathrm{~A}-, 9 \mathrm{~B}-, 9 \mathrm{C}-$, and 9D-TCNE was observed, it was not possible to obtain definitive values of ϵ and K for any of these complexes.
a. Monoalkynes. The spectrum of 9A-TCNE (Figure 15) consists of a skewed band with $\lambda_{\max } 420 \mathrm{~nm}$ which resolves into strongly overlapping bands with maxima λ_{1} and λ_{2} at about 370 and 435 nm . The spectrum of 9BTCNE (Figure 6) has distinct bands with maxima at 365 and $475 \mathrm{~nm} ; 9 \mathrm{C}-\mathrm{TCNE}$ (Figure 16) has a shoulder at 365 nm and a band at 520 nm . In each of these complexes λ_{1} is at $365-370 \mathrm{~nm}$, indicating that this band is due to an $\mathrm{a}_{2} \rightarrow \pi^{*}$ transition. The IE values reported by Griebel et al^{53} for the a_{2}-like orbitals of $9 \mathbf{A}$ and $9 \mathbf{B}$ are 9.48 and 9.38 eV , while that reported by Maier and Turner ${ }^{42}$ for 9 C is 9.30 eV . When these IE values are substituted into eq 1^{\prime}, they yield λ_{1} values of 365,374 , and 381 nm for $9 \mathbf{A -}$, 9B-, and $9 \mathrm{C}-\mathrm{TCNE}$, which are in good agreement with the experimental values of 370,365 , and 365 nm . That these λ_{1} values are about 25-35 nm lower than the λ_{1} values for the corresponding phenylethylene-TCNE complexes, $7 \mathrm{~A}-$, 7 K -, and $8 \mathrm{C}-\mathrm{TCNE}(395,400$, and 400 sh nm$)$ is due to the ability of an ethynyl α-carbon to withdraw electrons from the π orbitals of the phenyl ring through induction.
The trend in λ_{2} values for $9 \mathrm{~A}-, 9 \mathrm{~B}-$, and $9 \mathrm{C}-\mathrm{TCNE}$ (435,475 , and 525 nm) roughly parallels the trend in λ_{2} values for $7 \mathrm{~A}-, 7 \mathrm{~K}$-, and $8 \mathrm{C}-\mathrm{TCNE}(480,530$, and 595 nm) but at values that are 45,55 , and 75 nm lower. The IE values of the b_{1}-like orbitals of 9 A and 9 B reported by Griebel et al. ${ }^{53}$ (8.78 and 8.49 eV) and of 9 C by Maier and Turner ${ }^{42}(8.84 \mathrm{eV})$ when substituted into eq 1^{\prime} yield λ_{2} values for $9 \mathbf{A -}, 9 B-$, and $9 \mathrm{C}-\mathrm{TCNE}$ of 438,477 , and 551 nm , which agree favorably with the experimental values of 435,475 , and 525 nm . These observations indicate that

[^20]

Figure 16. Spectra of biphenyl-TCNE and diphenylalkyneTCNE complexes.
the b_{1}-like orbitals of $9 \mathrm{~A}, 9 \mathrm{~B}$, and 9 C are conjugated with the π_{e} orbitals of the ethynyl group and that they are subject to the inductive electron-withdrawing effect of the α-carbon atom as well.
b. Diphenylbutadiyne. The spectrum of 9D-TCNE (Figure 16) consists of a shoulder at 375 nm and a broad band at 510 nm . The λ_{1} value is nearly identical with that of $9 \mathrm{C}-\mathrm{TCNE}$ (365 nm), indicating that the λ_{1} band arises from an $\mathrm{a}_{2} \rightarrow \pi^{*}$ transition and that the α-carbon of the butadiynyl group withdraws electrons from the phenyl rings. Andreocci et al. ${ }^{54}$ reported an ionization band in the PE spectrum of 9 D at 9.48 eV . This value, when substituted into eq 1 , yields a λ_{1} value of 365 nm for $9 \mathrm{D}-\mathrm{TCNE}$, which is in good agreement with the experimental value at 375 nm .

The λ_{2} band of $9 \mathrm{D}-\mathrm{TCNE}$ at 510 nm has a width $\Delta \nu_{1 / 2}$ of $6300 \mathrm{~cm}^{-1}$ compared to corresponding values for 9 C TCNE of 520 nm and $5800 \mathrm{~cm}^{-1}$. The fact that λ_{2} for 9D-TCNE is smaller than that for 9C-TCNE is surprising in view of the results obtained with $8 \mathrm{C}-$ and $8 \mathrm{~J}-\mathrm{TCNE}$. However, Andreocci et al. ${ }^{54}$ report three closely spaced ionization bands in the PE spectrum of 9D at $8.23,8.55$, and 8.87 eV ; the first two were attributed to the conjugated $\mathrm{b}_{1}-\pi_{e}$ system which extends over the entire molecule and the third to the π_{e} orbitals. These IEs yield λ values of 520,469 , and 427 nm for 9D-TCNE when substituted into eq 1^{\prime}. We can account for the position and width of the λ_{2} band by assuming that it arises primarily from transitions involving the top two orbitals of 9D with a weak contribution from the third orbital.
c. Summary and Conclusions. The spectra of the phenylalkyne-TCNE complexes exhibit two maxima between 365 and 520 nm .
(1) Each of these complexes exhibits λ_{1} at 365 nm which arises from an $\mathrm{a}_{2} \rightarrow \pi^{*}$ transition. The λ_{1} values of the phenylalkyne-TCNE bands are $25-35 \mathrm{~nm}$ lower than those of the corresponding phenylalkene-TCNE complexes because of the strong electron-withdrawing effect of the ethylynic α-carbon.
(2) The λ_{2} bands of the phenylalkyne-TCNE complexes arise from transitions originating in the conjugated $\pi_{e}-b_{1}$ donor orbitals. The trend in λ_{2} values of the phenyl-alkyne-TCNE complexes roughly parallels the trend in λ_{2} values for the corresponding phenylalkene-TCNE com-
(54) Andreocci, M. V.; Bicev, P.; Cauletti, C.; Piancastelli, M. N. Gazz. Chim. Ital. 1980, 110, 31-35.
plexes but at values that are $45-75 \mathrm{~nm}$ lower.
(3) The λ_{2} value for $9 \mathrm{D}-\mathrm{TCNE}(510 \mathrm{~nm}$) is lower than that of $9 \mathrm{C}-$ TCNE (520 nm), indicating the absence of conjugation through the double bonds in 9D. This conclusion contrasts with that made for 3 F , which shows evidence of conjugation.

Acknowledgment. We are grateful for financial support from the Peter White Fund, the Faculty Research Grant Fund, and the Development Fund of Northern Michigan University. We thank Dr. David W. Kingston, Dr. Philip I. Pavlik, and Dr. Jerome A. Roth for valuable discussions. We are indebted to Dr. Rolf Gleiter, Dr. Peter Bischof, and their colleagues in the Organisch-Chemisches Institut of Heidelberg University for their hospitality and assistance during the preparation of this paper.
Registry No. 1A•TCNE, 123884-13-9; 1B-TCNE, 123884-14-0; 1C•TCNE, 123884-15-1; 1D•TCNE, 123884-16-2; 1E-TCNE, 123884-17-3; 2A•TCNE, 93245-61-5; 2B-TCNE, 123884-18-4; 2C.TCNE, 123884-19-5; 2D•TCNE, 51930-60-0; 2E•TCNE, 123884-20-8; 2F-TCNE, 36880-85-0; 2G-TCNE, 123884-21-9; 2H-TCNE, 93758-83-9; 2I•TCNE, 52515-79-4; 2J•TCNE, 61822-51-3; 2K•TCNE, 123884-22-0; 2L-TCNE, 123884-23-1; 3A•TCNE, 123884-24-2; 3B-TCNE, 123884-25-3; 3C•TCNE, 123884-26-4; 3D-TCNE, 123884-27-5; 3E•TCNE, 123884-28-6; 3F-TCNE,

123884-29-7; 3G•TCNE, 123884-30-0; 4A•TCNE, 1446-08-8; 4B-TCNE, 6165-98-6; 5A•TCNE, 2590-60-5; 5B-TCNE, 18852-73-8; 5C-TCNE, 26515-97-9; 5D-TCNE, 26819-20-5; 5E-TCNE, 17557-14-1; 5F•TCNE, 2590-61-6; 5G•TCNE, 2590-62-7; 5HTCNE, 2590-63-8; 5I-TCNE, 123884-31-1; 5J.TCNE, 26034-90-2; 5K-TCNE, 2590-64-9; 5L•TCNE, 2590-65-0; 5M•TCNE, 123884-32-2; 5N•TCNE, 2590-66-1; 50•TCNE, 123884-33-3; 5P.TCNE, 26034-91-3; 5Q.TCNE, 2590-68-3; 5R.TCNE, 2590-69-4; 5S.TCNE, 1223-67-2; 5T•TCNE, 962-69-6; 5U•TCNE, 2605-01-8; 5V•TCNE, 78717-32-5; 5W•TCNE, 123884-34-4; 5X•TCNE, 123884-35-5; 6A-TCNE, 62371-33-9; 6B•TCNE, 123884-36-6; 6C•TCNE, 70239-05-3; 6D•TCNE, 123884-37-7; 6E-TCNE, 51644-54-3; 6F-TCNE, $6140-60-9$; 6G.TCNE, 2987-74-8; 6H•TCnE, 123884-38-8; 7A•TCNE, 7431-42-7; 7B-TCNE, 123884-39-9; 7C-TCNE, 33429-76-4; 7D.TCNE, 33429-74-2; 7E-TCNE, 123884-40-2; 7F.TCnE, 123884-41-3; 7G.TCNE, 123884-42-4; 7H.TCNE, 123884-43-5; 7I-TCNE, 123884-44-6; 7J.TCNE, 53039-88-6; 7K•TCNE, 123884-45-7; 7L•TCNE, 123884-46-8; 7M.TCNE, 123884-47-9; 7N-TCNE, 7378-72-5; 7O-TCNE, 123884-48-0; 7P.TCNE, 123884-50-4; 7Q•TCNE, 123884-51-5; 8A•TCNE, 60977-89-1; 8B-TCNE, 7371-39-3; 8C•TCNE, 7371-38-2; 8D. TCNE, 108461-13-8; 8E.TCNE, 123884-52-6; 8F.TCNE, 123884-53-7; 8G-TCNE, 123884-54-8; 8H-TCNE, 60977-90-4; 8I•TCNE, 60977-91-5; 8J.TCNE, 19255-32-4; 8K.TCNE, 123884-55-9; 8L.TCNE, 123884-56-0; 8M•TCNE, 123884-57-1; 9A•TCNE, 29578-48-1; 9B-TCNE, 29578-50-5; 9C•TCNE, 62371-37-3; 9D-TCNE, 123884-58-2.

(Diphenylphosphinoyl)oxyl: An Extremely Reactive Oxygen-Centered Radical ${ }^{1}$

H.-G. Korth ${ }^{*, 2}$
Institut für Organische Chemie, Universität-GHS Essen, D-4300 Essen, Federal Republic of Germany
J. Lusztyk and K. U. Ingold
Division of Chemistry, National Research Council, Ottawa, Ontario, Canada K1A 0R6

Received April 27, 1989

Abstract

The title radical, $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{O}^{\circ}$, has been generated by laser flash photolysis (LFP) of the peroxide $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{O}\right]_{2}$ (1) in $\mathrm{CH}_{3} \mathrm{CN}$ solution. It has a broad, structureless absorption extending from 400 to beyond 800 nm . Absolute bimolecular rate constants k for its reactions with various organic substrates have been measured by LFP. It has been found that $\mathrm{Ph}_{2} \mathrm{P}(0) \mathrm{O}^{\circ}$ is more reactive in hydrogen abstraction (e.g., cyclohexane, $k=2.4 \times 10^{8} \mathrm{M}^{-1}$ s^{-1}) and addition (e.g., benzene, $k=9.1 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}$) than any other organic oxygen-centered radical. Only HO^{*} is (generally) more reactive. Although $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{O}^{*}$ could not be directly detected by EPR spectroscopy, it was successfully spin-trapped with a nitrone and with alkenes and alkynes. The formation of $\mathrm{Ph}_{2} \mathrm{P}(0) \mathrm{O}^{\bullet}$ in the photodecomposition but not in the thermal decomposition of 1 is supported by ${ }^{31} \mathrm{P}$ NMR analyses of reaction products. Semiempirical AM1-PM3 calculations on $\mathrm{H}_{2} \mathrm{P}(\mathrm{O}) \mathrm{O}^{\bullet}$ are also reported.

Absolute rate constants for the reactions of several classes of carbonyloxyl radicals, $\mathrm{XC}(0) \mathrm{O}^{-}$, with a variety of organic substrates have recently been measured in this laboratory by using the technique of laser flash photolysis (LFP). ${ }^{36}$ The magnitude of the second-order rate constant for hydrogen atom abstraction and/or addition reactions of $\mathrm{XC}(\mathrm{O}) \mathrm{O}^{\bullet}$ with a specific substrate generally

[^21]increased with an increase in the inductive electron-withdrawing effect of the substituent $\mathrm{X} .{ }^{4-7}$ Differences in the reactivities of different $\mathrm{XC}(0) 0^{\circ}$ were attributed to variations in the relative contribution that polar, canonical structures (e.g., $\left.\left[\mathrm{XC}(0) \mathrm{O}^{-}, \mathrm{RH}^{+}\right]^{*}\right)$ make to the stabilization of the reaction's transition state. ${ }^{-6}$ It therefore seemed possible that oxyl radicals even more reactive than the $\mathrm{XC}(\mathrm{O}) \mathrm{O}^{\bullet}$ already examined ${ }^{7}$ might be derived from oxy acids having greater intrinsic (i.e., gas phase) acidities ${ }^{8}$ than the intrinsic acidities of the $\mathrm{XC}(\mathrm{O}) \mathrm{OH}$ acids. An attractive possibility for a preliminary test of this hypothesis was the (diphenylphosphinoyl) oxyl radical, $\mathrm{Ph}_{2} \mathrm{P}(0) \mathrm{O}^{\bullet}, 9$ since the

[^22]
[^0]: (1) Merrifield, R. E.; Phillips, W. D. J. Am. Chem. Soc. 1958, 80, 2778-2782.
 (2) Voigt, E. M. J. Am. Chem. Soc. 1964, 86, 3611-3617.
 (3) Haselbach, E.; Rossi, M. Helv. Chim. Acta 1976, 59, 2635-2652.
 (4) Rossi, M.; Buser, U.; Haselbach, E. Helv. Chim. Acta 1976, 59, 1039-1053.
 (5) Frey, J. E.; Cole, R. D.; Kitchen, E. C.; Surprenant, L. M.; Sylwestrzak, M. S. J. Am. Chem. Soc. 1985, 107, 748-755.
 (6) Frey, J. E.; Kitchen, E. C. J. Am. Chem. Soc. 1983, 105, 2175-2178.

[^1]: (7) Frey, J. E. Appl. Spectrosc. Rev. 1987, 23, 247-283.

[^2]: (8) Liptay, W. Z. Electrochem. 1961, 65, 375-383.
 (9) Scott, R. L. Recl. Trav. Chim. Pays-Bas 1956, 75, 787-789.
 (10) Foster, R.; Matheson, I. B. C. Spectrochim. Acta 1967, 23A, 2037-2042.
 (11) Deranleau, D. A. J. Am. Chem. Soc. 1969, 91, 4044-4054.

[^3]: (13) Prue, J. E. J. Chem. Soc. 1965, 7534-7535.

[^4]: (14) Heilbronner, E.; Gleiter, R.; Hoshi, T.; de Meijere, A. Helv. Chim. Acta 1973, 56, 1594-1604.

[^5]: (15) Traven, V. F.; Donyagina, V. F.; Fedotov, N. S.; Evert, G. V.; Stepanov, B. I.J. Gen. Chem. USSR (Engl. Transl.) 1976, 46, 2738-2739; Zh. Obshch. Khim. 1976, 46, 2761.
 (16) Worley, S. D.; Mateescu, G. D.; McFarland, C. W.; Fort, R. C.; Sheley, C. F. J. Am. Chem. Soc. 1973, 95, 7580-7586.

[^6]: (17) Ponec, R.; Chvalovsky, V. Coll. Czech. Chem. Commun. 1973, 38, 3845-3851.
 (18) Ponec, R.; Chvalovsky, V.; Cernysev, E. A.; Komarenkova, N. G.; Baskirova, S. A. Coll. Czech. Chem. Commun. 1974, 39, 1177-1184.
 (19) Masclet, P.; Grosjean, D.; Mouvier, G.; Dubois, J. J. Electron Spectrosc. 1973, 2, 225-237.
 (20) Bischof, P.; Heilbronner, E. Helv. Chim. Acta 1970, 53, 1677-1682.

[^7]: (21) Middleton, W. G.; Heckert, R. E.; Little, E. L.; Krespan, C. G. J. Am. Chem. Soc. 1958, 80, 2783-2788.

[^8]: (22) Batich, C.; Bischof, P.; Heilbronner, E. J. Electron Spectrosc. 1972/1973, 1, 333-353.

[^9]: (23) Carlier, P.; Dubois, J. E.; Masclet, P.; Mouvier, G. J. Electron Spectrosc. 1974, 7, 55-67.
 (24) Broglie, F.; Heilbronner, E.; Hornung, V.; Kloster-Jensen, E. Helv. Chim. Acta 1973, 56, 2171-2178.

[^10]: (25) Ho, Y. E.; Thompson, C. C. J. Chem. Soc., Chem. Commun. 1973,

[^11]: (27) Emslie, P. H.; Foster, R.; Horman, I.; Morris, J. W.; Twistelton, D. R. J. Chem. Soc. B 1969, 1161-1165.

[^12]: (28) Castro, C. E.; Andrews, L. J.; Keefer, R. M. J. Am. Chem. Soc.

[^13]: (29) Shudo, K.; Kobayashi, T.; Utsunomiya, C. Tetrahedron 1977, 33, 1721-1724.
 (30) Prins, I.; Verhoeven, J. W.; deBoer, Th. J.; Worrell, C. Tetrahedron 1977, 33, 127-131.
 (31) Shudo, K.; Okamoto, T. Tetrahedron 1977, 33, 1717-1719.
 (32) Rabalais, J. W.; Colton, R. J. J. Electron Spectrosc. 1972/73, 1, 83-99.

[^14]: (33) Heilbronner, E.; Maier, J. P. Electron Spectroscopy: Theory, Techniques and Applications; Brundle, C. R., Baker, A. D., Eds.; Academic Press: London, 1977; p 245, footnote 74.
 (34) Koenig, T.; Tuttle, M.; Weilesek, R. A. Tetrahedron Lett. 1974, 2537-2540.

[^15]: (35) Dewar, M. J. S.; Thompson, C. C. Tetrahedron Supple. 1966, 7, 97-114.

[^16]: (39) Ruscic, B.; Kovac, B.; Klasinc, L.; Güsten, H. Z. Naturforsch. 1978, 33a, 1006-1012.
 (40) Suzuki, H. Bull. Chem. Soc. Jpn. 1959, 32, 1340-1350.
 (41) Suzuki, H. Bull. Chem. Soc. Jpn. 1959, 32, 1357-1361.

[^17]: (42) Maier, J. P.; Turner, D. W. J. Chem. Soc., Faraday Trans. 2 1973, 69, 196-206.

[^18]: (44) Suzuki, H. Bull. Chem. Soc. Jpn. 1960, 33, 619-628.
 (45) Güsten, H.; Klasinc, L.; Ruscic, B. Z. Naturforsch. 1976, 31a, 1051-1056.

[^19]: (50) Suzuki, H. Bull. Chem. Soc. Jpn. 1960, 33, 389-396.
 (51) Favini, G.; Simonetta, M. Theoret. Chim. Acta 1963, 1, 294-301

[^20]: (53) Griebel, R.; Hohlneicher, G.; Dörr, F. J. Electron Spectrosc. 1974, 4, 185-206.

[^21]: (1) Issued as NRCC No. 30772. This paper is dedicated to the memory of the late Professor A. Mangini, University of Bologna, Italy.
 (2) NRCC/Summit Postdoctoral Fellow, 1987-1988.
 (3) Chateauneuf, J.; Lusztyk, J.; Ingold, K. U. J. Am. Chem. Soc. 1988, 110, 2877-2885.
 (4) Chateauneuf, J.; Lusztyk, J.; Ingold, K. U. J. Am. Chem. Soc. 1988, 110, 2886-2893.
 (5) Chateauneuf, J.; Lusztyk, J.; Maillard, B.; Ingold, K. U. J. Am. Chem. Soc. 1988, 110, 6727-6731.
 (6) Korth, H.-G.; Chateauneuf, J.; Lusztyk, J.; Ingold, K. U. J. Am. Chem. Soc. 1988, 110, 5929-5931.

[^22]: (7) $\mathrm{X}=$ aryl, ${ }^{4}$ alkoxy, ${ }^{5}$ alkenyl, ${ }^{6}$ and alkynyl. ${ }^{6}$
 (8) As measured by ΔG for the gas-phase reaction: $\mathrm{HA} \rightarrow \mathrm{H}^{+}+\mathrm{A}^{-}$.
 (9) The structure is written as $\mathrm{Ph}_{2} \mathrm{P}(0) \mathrm{O}^{\circ}$ rather than $\mathrm{Ph}_{2} \mathrm{PO}_{2}{ }^{-}$in order to distinguish this radical from its (unknown) peroxyl isomer, $\mathrm{Ph}_{2} \mathrm{POO}$.

